|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:10356 |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: intfloat/multilingual-e5-large |
|
widget: |
|
- source_sentence: Horn band legwearis a type oflegwear, oftenthighhighs, with ahornedcharacter |
|
design along the upper band. |
|
sentences: |
|
- horn band legwear |
|
- head out of frame |
|
- sweatpants |
|
- source_sentence: When a character is looping the laces of theiruntied shoelacesinto |
|
a sturdy bow. |
|
sentences: |
|
- hair tie |
|
- tying footwear |
|
- loose necktie |
|
- source_sentence: Use this tag if the person's eyewear isremovedfrom their usual |
|
place and carried in the hands. If it still rests on the bridge of the nose or |
|
head, seeadjusting eyewearand its related tags. |
|
sentences: |
|
- cow costume |
|
- sarong |
|
- holding removed eyewear |
|
- source_sentence: When both of a character's hands are on another character'sthighs. |
|
sentences: |
|
- baking |
|
- triplets |
|
- hands on another's thighs |
|
- source_sentence: A long appendage protruding from the lower back. Often covered |
|
in fur or scales. A common feature of animal girls. |
|
sentences: |
|
- tail |
|
- grey-framed eyewear |
|
- stomach day |
|
datasets: |
|
- meandyou200175/word_embedding |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@2 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_accuracy@100 |
|
- cosine_precision@1 |
|
- cosine_precision@2 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_precision@100 |
|
- cosine_recall@1 |
|
- cosine_recall@2 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_recall@100 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@1 |
|
- cosine_mrr@2 |
|
- cosine_mrr@5 |
|
- cosine_mrr@10 |
|
- cosine_mrr@100 |
|
- cosine_map@100 |
|
model-index: |
|
- name: SentenceTransformer based on intfloat/multilingual-e5-large |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.9073359073359073 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@2 |
|
value: 0.9739382239382239 |
|
name: Cosine Accuracy@2 |
|
- type: cosine_accuracy@5 |
|
value: 0.9942084942084942 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.999034749034749 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_accuracy@100 |
|
value: 1.0 |
|
name: Cosine Accuracy@100 |
|
- type: cosine_precision@1 |
|
value: 0.9073359073359073 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@2 |
|
value: 0.48696911196911197 |
|
name: Cosine Precision@2 |
|
- type: cosine_precision@5 |
|
value: 0.19884169884169883 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.0999034749034749 |
|
name: Cosine Precision@10 |
|
- type: cosine_precision@100 |
|
value: 0.010000000000000002 |
|
name: Cosine Precision@100 |
|
- type: cosine_recall@1 |
|
value: 0.9073359073359073 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@2 |
|
value: 0.9739382239382239 |
|
name: Cosine Recall@2 |
|
- type: cosine_recall@5 |
|
value: 0.9942084942084942 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.999034749034749 |
|
name: Cosine Recall@10 |
|
- type: cosine_recall@100 |
|
value: 1.0 |
|
name: Cosine Recall@100 |
|
- type: cosine_ndcg@10 |
|
value: 0.9601842774877813 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@1 |
|
value: 0.9073359073359073 |
|
name: Cosine Mrr@1 |
|
- type: cosine_mrr@2 |
|
value: 0.9406370656370656 |
|
name: Cosine Mrr@2 |
|
- type: cosine_mrr@5 |
|
value: 0.9462837837837839 |
|
name: Cosine Mrr@5 |
|
- type: cosine_mrr@10 |
|
value: 0.946988570202856 |
|
name: Cosine Mrr@10 |
|
- type: cosine_mrr@100 |
|
value: 0.9470763202906061 |
|
name: Cosine Mrr@100 |
|
- type: cosine_map@100 |
|
value: 0.9470763202906061 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# SentenceTransformer based on intfloat/multilingual-e5-large |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision 0dc5580a448e4284468b8909bae50fa925907bc5 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 1024 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("meandyou200175/e5_large_finetune_word") |
|
# Run inference |
|
sentences = [ |
|
'A long appendage protruding from the lower back. Often covered in fur or scales. A common feature of animal girls.', |
|
'tail', |
|
'stomach day', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:---------------------|:-----------| |
|
| cosine_accuracy@1 | 0.9073 | |
|
| cosine_accuracy@2 | 0.9739 | |
|
| cosine_accuracy@5 | 0.9942 | |
|
| cosine_accuracy@10 | 0.999 | |
|
| cosine_accuracy@100 | 1.0 | |
|
| cosine_precision@1 | 0.9073 | |
|
| cosine_precision@2 | 0.487 | |
|
| cosine_precision@5 | 0.1988 | |
|
| cosine_precision@10 | 0.0999 | |
|
| cosine_precision@100 | 0.01 | |
|
| cosine_recall@1 | 0.9073 | |
|
| cosine_recall@2 | 0.9739 | |
|
| cosine_recall@5 | 0.9942 | |
|
| cosine_recall@10 | 0.999 | |
|
| cosine_recall@100 | 1.0 | |
|
| **cosine_ndcg@10** | **0.9602** | |
|
| cosine_mrr@1 | 0.9073 | |
|
| cosine_mrr@2 | 0.9406 | |
|
| cosine_mrr@5 | 0.9463 | |
|
| cosine_mrr@10 | 0.947 | |
|
| cosine_mrr@100 | 0.9471 | |
|
| cosine_map@100 | 0.9471 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 10,356 training samples |
|
* Columns: <code>query</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | positive | |
|
|:--------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 36.54 tokens</li><li>max: 177 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.3 tokens</li><li>max: 13 tokens</li></ul> | |
|
* Samples: |
|
| query | positive | |
|
|:------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------| |
|
| <code>Eyewear shaped like a semicircle.</code> | <code>semi-circular eyewear</code> | |
|
| <code>A handheld electric appliance used fordryingand styling hair.</code> | <code>hair dryer</code> | |
|
| <code>When onebreastis exposed while the other remains covered or confined by clothing. Seebreasts outfor when both breasts are exposed.</code> | <code>one breast out</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### word_embedding |
|
|
|
* Dataset: [word_embedding](https://huggingface.co/datasets/meandyou200175/word_embedding) at [af76b11](https://huggingface.co/datasets/meandyou200175/word_embedding/tree/af76b11c1d93542ca76e864a60b1744d5e02b099) |
|
* Size: 1,036 evaluation samples |
|
* Columns: <code>query</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | positive | |
|
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 35.89 tokens</li><li>max: 164 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.38 tokens</li><li>max: 14 tokens</li></ul> | |
|
* Samples: |
|
| query | positive | |
|
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------| |
|
| <code>A machine that manipulates data according to a list of instructions. The ability to store and execute lists of instructions called programs make computers extremely versatile. On Danbooru's images they are most often used fordrawing,playing gamesand accessing theinternet.</code> | <code>computer</code> | |
|
| <code>Aplaying cardwith twoclubs.</code> | <code>two of clubs</code> | |
|
| <code>Yebisu (ヱビス, Ebisu) is a beer produced bySapporo Breweries. It is one of Japan's oldest brands, first being brewed in Tokyo in 1890 by the Japan Beer Brewery Company.</code> | <code>yebisu</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 5 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `tp_size`: 0 |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | Validation Loss | cosine_ndcg@10 | |
|
|:------:|:----:|:-------------:|:---------------:|:--------------:| |
|
| -1 | -1 | - | - | 0.7166 | |
|
| 0.1543 | 100 | 0.9191 | - | - | |
|
| 0.3086 | 200 | 0.1876 | - | - | |
|
| 0.4630 | 300 | 0.1547 | - | - | |
|
| 0.6173 | 400 | 0.1556 | - | - | |
|
| 0.7716 | 500 | 0.179 | - | - | |
|
| 0.9259 | 600 | 0.1234 | - | - | |
|
| 1.0802 | 700 | 0.087 | - | - | |
|
| 1.2346 | 800 | 0.0576 | - | - | |
|
| 1.3889 | 900 | 0.0564 | - | - | |
|
| 1.5432 | 1000 | 0.0583 | 0.0271 | 0.9198 | |
|
| 1.6975 | 1100 | 0.0764 | - | - | |
|
| 1.8519 | 1200 | 0.0493 | - | - | |
|
| 2.0062 | 1300 | 0.0481 | - | - | |
|
| 2.1605 | 1400 | 0.0222 | - | - | |
|
| 2.3148 | 1500 | 0.0234 | - | - | |
|
| 2.4691 | 1600 | 0.0283 | - | - | |
|
| 2.6235 | 1700 | 0.0236 | - | - | |
|
| 2.7778 | 1800 | 0.026 | - | - | |
|
| 2.9321 | 1900 | 0.0217 | - | - | |
|
| 3.0864 | 2000 | 0.0193 | 0.0061 | 0.9534 | |
|
| 3.2407 | 2100 | 0.0135 | - | - | |
|
| 3.3951 | 2200 | 0.0162 | - | - | |
|
| 3.5494 | 2300 | 0.0109 | - | - | |
|
| 3.7037 | 2400 | 0.0107 | - | - | |
|
| 3.8580 | 2500 | 0.0105 | - | - | |
|
| 4.0123 | 2600 | 0.0095 | - | - | |
|
| 4.1667 | 2700 | 0.0146 | - | - | |
|
| 4.3210 | 2800 | 0.0102 | - | - | |
|
| 4.4753 | 2900 | 0.0108 | - | - | |
|
| 4.6296 | 3000 | 0.01 | 0.0061 | 0.9602 | |
|
| 4.7840 | 3100 | 0.008 | - | - | |
|
| 4.9383 | 3200 | 0.0117 | - | - | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.11 |
|
- Sentence Transformers: 3.4.1 |
|
- Transformers: 4.51.1 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.3.0 |
|
- Datasets: 3.5.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |