meimeilook commited on
Commit
5379dc0
·
verified ·
1 Parent(s): 3435b48

upload app-fp8.py

Browse files
Files changed (1) hide show
  1. app-fp8.py +859 -0
app-fp8.py ADDED
@@ -0,0 +1,859 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # new add
2
+ import time
3
+ import psutil
4
+ import platform
5
+ import atexit
6
+
7
+ pynvml_available = False
8
+ if platform.system() == "Linux" or platform.system() == "Windows":
9
+ try:
10
+ from pynvml import *
11
+ nvmlInit()
12
+ pynvml_available = True
13
+ print("pynvml (NVIDIA GPU monitoring library) initialized successfully.")
14
+
15
+ def shutdown_pynvml():
16
+ print("Shutting down pynvml...")
17
+ nvmlShutdown()
18
+ atexit.register(shutdown_pynvml) # register close pynvml when it quit
19
+
20
+ except Exception as e:
21
+ print(f"Warning: pynvml could not be initialized. Detailed GPU stats via pynvml will not be available. Error: {e}")
22
+ if "NVML Shared Library Not Found" in str(e):
23
+ print("pynvml error hint: NVML shared library not found. If you have an NVIDIA GPU and drivers, ensure the library is accessible.")
24
+ elif "Driver Not Loaded" in str(e):
25
+ print("pynvml error hint: NVIDIA driver is not loaded. Please check your GPU driver installation.")
26
+
27
+ import gradio as gr
28
+ import numpy as np
29
+ import os
30
+ import torch
31
+ import random
32
+
33
+ from accelerate import infer_auto_device_map, load_checkpoint_and_dispatch, init_empty_weights
34
+ from PIL import Image
35
+
36
+ from data.data_utils import add_special_tokens, pil_img2rgb
37
+ from data.transforms import ImageTransform
38
+ from inferencer import InterleaveInferencer
39
+ from modeling.autoencoder import load_ae
40
+ from modeling.bagel.qwen2_navit import NaiveCache
41
+ from modeling.bagel import (
42
+ BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM,
43
+ SiglipVisionConfig, SiglipVisionModel
44
+ )
45
+ from modeling.qwen2 import Qwen2Tokenizer
46
+
47
+ import argparse
48
+
49
+ parser = argparse.ArgumentParser()
50
+ parser.add_argument("--server_name", type=str, default="127.0.0.1")
51
+ parser.add_argument("--server_port", type=int, default=7860)
52
+ parser.add_argument("--share", action="store_true")
53
+ parser.add_argument("--model_path", type=str, default="/root/your_path/BAGEL-7B-MoT")
54
+ args = parser.parse_args()
55
+
56
+ # Model Initialization
57
+ model_path = args.model_path #Download from https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT to models/BAGEL-7B-MoT
58
+
59
+ llm_config = Qwen2Config.from_json_file(os.path.join(model_path, "llm_config.json"))
60
+ llm_config.qk_norm = True
61
+ llm_config.tie_word_embeddings = False
62
+ llm_config.layer_module = "Qwen2MoTDecoderLayer"
63
+
64
+ vit_config = SiglipVisionConfig.from_json_file(os.path.join(model_path, "vit_config.json"))
65
+ vit_config.rope = False
66
+ vit_config.num_hidden_layers -= 1
67
+
68
+ vae_model, vae_config = load_ae(local_path=os.path.join(model_path, "ae.safetensors"))
69
+
70
+ config = BagelConfig(
71
+ visual_gen=True,
72
+ visual_und=True,
73
+ llm_config=llm_config,
74
+ vit_config=vit_config,
75
+ vae_config=vae_config,
76
+ vit_max_num_patch_per_side=70,
77
+ connector_act='gelu_pytorch_tanh',
78
+ latent_patch_size=2,
79
+ max_latent_size=64,
80
+ )
81
+
82
+ with init_empty_weights():
83
+ language_model = Qwen2ForCausalLM(llm_config)
84
+ vit_model = SiglipVisionModel(vit_config)
85
+ model = Bagel(language_model, vit_model, config)
86
+ model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config, meta=True)
87
+
88
+ tokenizer = Qwen2Tokenizer.from_pretrained(model_path)
89
+ tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)
90
+
91
+ vae_transform = ImageTransform(1024, 512, 16)
92
+ vit_transform = ImageTransform(980, 224, 14)
93
+
94
+ # # Model Loading and Multi GPU Infernece Preparing
95
+ # device_map = infer_auto_device_map(
96
+ # model,
97
+ # max_memory={i: "24GiB" for i in range(torch.cuda.device_count())},
98
+ # no_split_module_classes=["Bagel", "Qwen2MoTDecoderLayer"],
99
+ # )
100
+
101
+ # same_device_modules = [
102
+ # 'language_model.model.embed_tokens',
103
+ # 'time_embedder',
104
+ # 'latent_pos_embed',
105
+ # 'vae2llm',
106
+ # 'llm2vae',
107
+ # 'connector',
108
+ # 'vit_pos_embed'
109
+ # ]
110
+
111
+ # if torch.cuda.device_count() == 1:
112
+ # first_device = device_map.get(same_device_modules[0], "cuda:0")
113
+ # for k in same_device_modules:
114
+ # if k in device_map:
115
+ # device_map[k] = first_device
116
+ # else:
117
+ # device_map[k] = "cuda:0"
118
+ # else:
119
+ # first_device = device_map.get(same_device_modules[0])
120
+ # for k in same_device_modules:
121
+ # if k in device_map:
122
+ # device_map[k] = first_device
123
+
124
+ # --- new changes ---
125
+ print("Starting model loading and device map configuration...")
126
+
127
+ # --- ram & vram helps functions ---
128
+ def get_gpu_memory_stats_pynvml(device_id=0):
129
+ if not pynvml_available:
130
+ return f"GPU-{device_id} (pynvml): Not available."
131
+ try:
132
+ handle = nvmlDeviceGetHandleByIndex(device_id)
133
+ info = nvmlDeviceGetMemoryInfo(handle)
134
+ total_gb = info.total / (1024**3)
135
+ used_gb = info.used / (1024**3)
136
+ # free_gb = info.free / (1024**3) # It can be calculated by the sum already used
137
+ return f"GPU-{device_id} (pynvml): Total: {total_gb:.2f} GB, Used (Overall): {used_gb:.2f} GB"
138
+ except NVMLError as e:
139
+ return f"GPU-{device_id} (pynvml) Error: {e}"
140
+
141
+ def get_gpu_memory_stats_pytorch(device_id=0):
142
+ if not torch.cuda.is_available():
143
+ return "PyTorch: CUDA not available."
144
+ if device_id < 0 or device_id >= torch.cuda.device_count():
145
+ return f"PyTorch GPU-{device_id}: Invalid device ID."
146
+
147
+ allocated_gb = torch.cuda.memory_allocated(device_id) / (1024**3)
148
+ reserved_gb = torch.cuda.memory_reserved(device_id) / (1024**3) # PyTorch Reserved Total vram
149
+
150
+ # try gets pynvml info
151
+ total_capacity_str_pt = ""
152
+ if pynvml_available:
153
+ try:
154
+ handle = nvmlDeviceGetHandleByIndex(device_id)
155
+ info = nvmlDeviceGetMemoryInfo(handle)
156
+ total_gb_pt = info.total / (1024**3)
157
+ total_capacity_str_pt = f"Total Capacity: {total_gb_pt:.2f} GB, "
158
+ except NVMLError:
159
+ pass # If the acquisition fails, the total capacity will not be displayed
160
+
161
+ return (f"PyTorch GPU-{device_id}: {total_capacity_str_pt}"
162
+ f"Allocated: {allocated_gb:.2f} GB, Reserved: {reserved_gb:.2f} GB")
163
+
164
+ def get_system_ram_stats():
165
+ mem = psutil.virtual_memory()
166
+ total_gb = mem.total / (1024**3)
167
+ available_gb = mem.available / (1024**3)
168
+ used_gb = mem.used / (1024**3)
169
+ percent_used = mem.percent
170
+ return (f"System RAM: Total: {total_gb:.2f} GB, Available: {available_gb:.2f} GB, "
171
+ f"Used (Overall): {used_gb:.2f} GB ({percent_used}%)")
172
+
173
+ def get_process_ram_stats():
174
+ process = psutil.Process(os.getpid()) # get the current Python process
175
+ mem_info = process.memory_info()
176
+ rss_gb = mem_info.rss / (1024**3) # Resident Set Size (Actual physical memory usage)
177
+ return f"App Process RAM (RSS): {rss_gb:.2f} GB"
178
+
179
+ def get_all_memory_stats_for_gradio_display():
180
+ """Prepare the string of memory/video memory statistics for Gradio display"""
181
+ stats_lines = []
182
+ if torch.cuda.is_available() and torch.cuda.device_count() > 0:
183
+ stats_lines.append("**GPU VRAM Usage:**")
184
+ for i in range(torch.cuda.device_count()):
185
+ stats_lines.append(get_gpu_memory_stats_pynvml(i))
186
+ stats_lines.append(get_gpu_memory_stats_pytorch(i))
187
+ if i < torch.cuda.device_count() - 1: # If there are multiple GPUs, add a separator
188
+ stats_lines.append("---")
189
+ else:
190
+ stats_lines.append("**GPU VRAM Usage:** CUDA not available or no GPUs found.")
191
+
192
+ stats_lines.append("\n**CPU RAM Usage:**")
193
+ stats_lines.append(get_system_ram_stats())
194
+ stats_lines.append(get_process_ram_stats())
195
+
196
+ return "\n".join(s for s in stats_lines if s)
197
+ # --- ram & vram helps functions end ---
198
+
199
+
200
+ # ram & vram setting
201
+ # ram & vram setting
202
+ # ram & vram setting edit by your spec
203
+ # If you have 60GB CPU vram,there are 55GiB (Leave some vram)
204
+
205
+ cpu_mem_for_offload = "16GiB"
206
+ gpu_mem_per_device = "24GiB" # Your GPU Vram
207
+
208
+ max_memory_config = {i: gpu_mem_per_device for i in range(torch.cuda.device_count())}
209
+ if torch.cuda.device_count() == 0: # If there is no GPU, a basic configuration is also required
210
+ max_memory_config["cpu"] = cpu_mem_for_offload
211
+ else:
212
+ max_memory_config["cpu"] = cpu_mem_for_offload # Add a budget for the CPU
213
+
214
+ print(f"Using max_memory_config: {max_memory_config}")
215
+
216
+ device_map = infer_auto_device_map(
217
+ model,
218
+ max_memory=max_memory_config, # Use the configuration that includes the CPU memory budget
219
+ no_split_module_classes=["Bagel", "Qwen2MoTDecoderLayer"],
220
+ )
221
+ print("Device map after infer_auto_device_map (with CPU budget):")
222
+ for k, v_map in device_map.items(): # Check info
223
+ print(f" {k}: {v_map}")
224
+
225
+ same_device_modules = [
226
+ 'language_model.model.embed_tokens',
227
+ 'time_embedder',
228
+ 'latent_pos_embed',
229
+ 'vae2llm',
230
+ 'llm2vae',
231
+ 'connector',
232
+ 'vit_pos_embed'
233
+ ]
234
+
235
+ # already have same_device_modules
236
+ if torch.cuda.device_count() > 0:
237
+ first_device_key = same_device_modules[0]
238
+ default_target_device = "cuda:0" # The default target is the first GPU
239
+ first_module_target_device = device_map.get(first_device_key, default_target_device)
240
+
241
+ print(f"Target device for same_device_modules (based on {first_device_key}): {first_module_target_device}")
242
+
243
+ for k_module in same_device_modules:
244
+ if k_module in device_map:
245
+ if device_map[k_module] != first_module_target_device:
246
+ print(f" Moving {k_module} from {device_map[k_module]} to {first_module_target_device} (same_device_modules)")
247
+ device_map[k_module] = first_module_target_device
248
+ else: # If the module is not in the automatically generated map but you want it to be on a specific device
249
+ print(f" Assigning {k_module} (from same_device_modules) to {first_module_target_device} as it was not in initial map.")
250
+ device_map[k_module] = first_module_target_device
251
+ elif torch.cuda.device_count() == 0 and "cpu" in max_memory_config: # without GPU
252
+ print("No CUDA devices found. Assigning same_device_modules to CPU.")
253
+ for k_module in same_device_modules:
254
+ device_map[k_module] = "cpu"
255
+
256
+
257
+ print("Device map after same_device_modules logic:")
258
+ for k, v_map in device_map.items():
259
+ print(f" {k}: {v_map}")
260
+
261
+ # key point 2:make sure no 'disk' (backup)
262
+ keys_to_change_to_cpu = []
263
+ for module_name, device_assignment in device_map.items():
264
+ if device_assignment == "disk":
265
+ keys_to_change_to_cpu.append(module_name)
266
+
267
+ if keys_to_change_to_cpu:
268
+ print(f"Manually changing the following layers from 'disk' to 'cpu': {keys_to_change_to_cpu}")
269
+ for module_name in keys_to_change_to_cpu:
270
+ device_map[module_name] = "cpu"
271
+ print("Final device_map before loading checkpoint (after disk override):")
272
+ for k, v_map in device_map.items():
273
+ print(f" {k}: {v_map}")
274
+ else:
275
+ print("No layers assigned to 'disk' by infer_auto_device_map, or they were already handled. Final device_map is as above.")
276
+ # --- fix model loadding end ---
277
+
278
+ # adjust layers more clearly&detail to GPU
279
+ # make sure,The device_map only contains GPU indexes (such as 0) or 'cpu'.
280
+ print("\nStarting custom device_map modifications to maximize GPU utilization...")
281
+ print("Device map state BEFORE custom modifications:")
282
+ for k_map_item, v_map_item in device_map.items():
283
+ print(f" {k_map_item}: {v_map_item}")
284
+
285
+
286
+ # -- Key tuning parameters Start --
287
+
288
+
289
+
290
+ # 1. Try to move more LLM Transformer layers (layers 11 to 27) to GPU 0
291
+ # These layers are currently on the CPU. There are a total of 17 such layers (ranging from 11 to 27).
292
+ # You can set the number of LLM layers that you wish to move from the CPU to GPU 0.
293
+ # Please start the experiment with a smaller value, such as 5 or 8, and then gradually increase it.
294
+ # If set to 17, all layers 11-27 will be attempted to be moved.
295
+
296
+ NUM_ADDITIONAL_LLM_LAYERS_TO_GPU = 5 # <--- 5 fit for 24GB Vram for TEST layers(like: 5, 8, 10, 12, 15, 17)
297
+
298
+ # 2. Whether to attempt to move the 'norm' and 'lm_head' layers of LLM to GPU 0 (if they are on the CPU)
299
+ # It is usually recommended to place them on the same device as the last layer of the LLM.
300
+
301
+ TRY_MOVE_LLM_NORM_HEAD_TO_GPU = True # <--- Default True, Turn to False,If you don't want to remove
302
+
303
+ # 3. (Optional) Whether to attempt to move 'vit_model' to GPU 0 (if it is on the CPU)
304
+ # This is usually considered only after the LLM layer has been successfully moved to the GPU
305
+ # And there is still a considerable amount of video memory left.
306
+
307
+ TRY_MOVE_VIT_MODEL_TO_GPU = False # <--- Default False , can be test
308
+
309
+ # --- Adjust end ---
310
+
311
+
312
+ # run LLM layers move
313
+ moved_llm_layers_count = 0
314
+ if NUM_ADDITIONAL_LLM_LAYERS_TO_GPU > 0:
315
+ print(f"\nAttempting to move up to {NUM_ADDITIONAL_LLM_LAYERS_TO_GPU} LLM layers (11 to {10 + NUM_ADDITIONAL_LLM_LAYERS_TO_GPU}) to GPU 0...")
316
+ for i in range(NUM_ADDITIONAL_LLM_LAYERS_TO_GPU):
317
+ layer_idx = 11 + i # From layer 11 to start
318
+ if layer_idx > 27: # language_model.model.layers Max to 27
319
+ print(f" Reached max layer index (27). Stopped LLM layer promotion.")
320
+ break
321
+ layer_name = f"language_model.model.layers.{layer_idx}"
322
+
323
+ if device_map.get(layer_name) == 'cpu':
324
+ print(f" Promoting LLM layer '{layer_name}' from 'cpu' to GPU 0.")
325
+ device_map[layer_name] = 0 # move to GPU 0
326
+ moved_llm_layers_count += 1
327
+ elif layer_name in device_map:
328
+ print(f" LLM Layer '{layer_name}' is already on device '{device_map[layer_name]}'. Skipping promotion.")
329
+ else:
330
+ print(f" Warning: LLM Layer '{layer_name}' not found in device_map. Cannot promote.")
331
+ print(f"Successfully promoted {moved_llm_layers_count} LLM layers to GPU 0.")
332
+ else:
333
+ print("\nSkipping promotion of additional LLM layers based on NUM_ADDITIONAL_LLM_LAYERS_TO_GPU setting.")
334
+
335
+ # run LLM norm & lm_head move
336
+ if TRY_MOVE_LLM_NORM_HEAD_TO_GPU:
337
+ print("\nAttempting to move LLM 'norm' and 'lm_head' to GPU 0 (if on CPU)...")
338
+ llm_aux_modules = ["language_model.model.norm", "language_model.model.lm_head"]
339
+ # you can choose other modules with LLM,eg: rotary_emb, norm_moe_gen,if there are on the CPU
340
+ # llm_aux_modules.append("language_model.model.rotary_emb")
341
+ # llm_aux_modules.append("language_model.model.norm_moe_gen")
342
+
343
+ for module_name in llm_aux_modules:
344
+ if device_map.get(module_name) == 'cpu':
345
+ print(f" Promoting '{module_name}' from 'cpu' to GPU 0.")
346
+ device_map[module_name] = 0
347
+ elif module_name in device_map:
348
+ print(f" Module '{module_name}' is already on device '{device_map[module_name]}'. Skipping promotion.")
349
+ else:
350
+ print(f" Warning: Module '{module_name}' not found in device_map. Cannot promote.")
351
+ else:
352
+ print("\nSkipping promotion of LLM 'norm' and 'lm_head' based on TRY_MOVE_LLM_NORM_HEAD_TO_GPU setting.")
353
+
354
+ # (option)run vit_model move
355
+ if TRY_MOVE_VIT_MODEL_TO_GPU:
356
+ print("\nAttempting to move 'vit_model' to GPU 0 (if on CPU)...")
357
+ vit_module_name = "vit_model"
358
+ if device_map.get(vit_module_name) == 'cpu':
359
+ print(f" Promoting '{vit_module_name}' from 'cpu' to GPU 0.")
360
+ device_map[vit_module_name] = 0
361
+ elif vit_module_name in device_map:
362
+ print(f" Module '{vit_module_name}' is already on device '{device_map[vit_module_name]}'. Skipping promotion.")
363
+ else:
364
+ print(f" Warning: Module '{vit_module_name}' not found in device_map. Cannot promote.")
365
+ else:
366
+ print("\nSkipping promotion of 'vit_model' based on TRY_MOVE_VIT_MODEL_TO_GPU setting.")
367
+
368
+
369
+ print("\nFinal device_map after all custom modifications:")
370
+ for k_map_item, v_map_item in device_map.items():
371
+ print(f" {k_map_item}: {v_map_item}")
372
+ print("--- End of custom device_map modifications ---")
373
+
374
+ # adjust gpu vram end
375
+
376
+
377
+
378
+
379
+ model = load_checkpoint_and_dispatch(
380
+ model,
381
+ checkpoint=os.path.join(model_path, "ema-FP8.safetensors"),
382
+ device_map=device_map,
383
+ offload_buffers=True,
384
+ offload_folder="offload",
385
+ dtype=torch.bfloat16,
386
+ force_hooks=True,
387
+ ).eval()
388
+
389
+
390
+ # Inferencer Preparing
391
+ inferencer = InterleaveInferencer(
392
+ model=model,
393
+ vae_model=vae_model,
394
+ tokenizer=tokenizer,
395
+ vae_transform=vae_transform,
396
+ vit_transform=vit_transform,
397
+ new_token_ids=new_token_ids,
398
+ )
399
+
400
+ def set_seed(seed):
401
+ """Set random seeds for reproducibility"""
402
+ if seed > 0:
403
+ random.seed(seed)
404
+ np.random.seed(seed)
405
+ torch.manual_seed(seed)
406
+ if torch.cuda.is_available():
407
+ torch.cuda.manual_seed(seed)
408
+ torch.cuda.manual_seed_all(seed)
409
+ torch.backends.cudnn.deterministic = True
410
+ torch.backends.cudnn.benchmark = False
411
+ return seed
412
+
413
+ # Text to Image function with thinking option and hyperparameters
414
+ def text_to_image(prompt, show_thinking=False, cfg_text_scale=4.0, cfg_interval=0.4,
415
+ timestep_shift=3.0, num_timesteps=50,
416
+ cfg_renorm_min=1.0, cfg_renorm_type="global",
417
+ max_think_token_n=1024, do_sample=False, text_temperature=0.3,
418
+ seed=0, image_ratio="1:1"):
419
+ # Set seed for reproducibility
420
+ set_seed(seed)
421
+
422
+ if image_ratio == "1:1":
423
+ image_shapes = (1024, 1024)
424
+ elif image_ratio == "4:3":
425
+ image_shapes = (768, 1024)
426
+ elif image_ratio == "3:4":
427
+ image_shapes = (1024, 768)
428
+ elif image_ratio == "16:9":
429
+ image_shapes = (576, 1024)
430
+ elif image_ratio == "9:16":
431
+ image_shapes = (1024, 576)
432
+
433
+ # Set hyperparameters
434
+ inference_hyper = dict(
435
+ max_think_token_n=max_think_token_n if show_thinking else 1024,
436
+ do_sample=do_sample if show_thinking else False,
437
+ text_temperature=text_temperature if show_thinking else 0.3,
438
+ cfg_text_scale=cfg_text_scale,
439
+ cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
440
+ timestep_shift=timestep_shift,
441
+ num_timesteps=num_timesteps,
442
+ cfg_renorm_min=cfg_renorm_min,
443
+ cfg_renorm_type=cfg_renorm_type,
444
+ image_shapes=image_shapes,
445
+ )
446
+ # --- add:record start_time ---
447
+ start_time = time.time()
448
+
449
+ # Call inferencer with or without think parameter based on user choice
450
+ result = inferencer(text=prompt, think=show_thinking, **inference_hyper)
451
+
452
+ # --- add:record end_time ---
453
+ end_time = time.time()
454
+ duration = end_time - start_time
455
+ duration_str = f"{duration:.2f} seconds"
456
+ print(f"The image takes time: {duration_str}") # conslog
457
+
458
+ return result["image"], result.get("text", None), duration_str
459
+
460
+
461
+ # Image Understanding function with thinking option and hyperparameters
462
+ def image_understanding(image: Image.Image, prompt: str, show_thinking=False,
463
+ do_sample=False, text_temperature=0.3, max_new_tokens=512):
464
+ # --- add:record start_time ---
465
+ start_time = time.time()
466
+
467
+ if image is None:
468
+ return "Please upload an image."
469
+
470
+ if isinstance(image, np.ndarray):
471
+ image = Image.fromarray(image)
472
+
473
+ image = pil_img2rgb(image)
474
+
475
+ # Set hyperparameters
476
+ inference_hyper = dict(
477
+ do_sample=do_sample,
478
+ text_temperature=text_temperature,
479
+ max_think_token_n=max_new_tokens, # Set max_length
480
+ )
481
+
482
+ # Use show_thinking parameter to control thinking process
483
+ result = inferencer(image=image, text=prompt, think=show_thinking,
484
+ understanding_output=True, **inference_hyper)
485
+
486
+ # --- add:record end_time ---
487
+ end_time = time.time()
488
+ duration = end_time - start_time
489
+ duration_str = f"{duration:.2f} seconds"
490
+ print(f"The image takes time: {duration_str}") # conslog
491
+
492
+ return result["text"], duration_str
493
+
494
+
495
+ # Image Editing function with thinking option and hyperparameters
496
+ def edit_image(image: Image.Image, prompt: str, show_thinking=False, cfg_text_scale=4.0,
497
+ cfg_img_scale=2.0, cfg_interval=0.0,
498
+ timestep_shift=3.0, num_timesteps=50, cfg_renorm_min=1.0,
499
+ cfg_renorm_type="text_channel", max_think_token_n=1024,
500
+ do_sample=False, text_temperature=0.3, seed=0):
501
+ # Set seed for reproducibility
502
+ set_seed(seed)
503
+
504
+ # --- add:record start_time ---
505
+ start_time = time.time()
506
+
507
+ if image is None:
508
+ return "Please upload an image.", ""
509
+
510
+ if isinstance(image, np.ndarray):
511
+ image = Image.fromarray(image)
512
+
513
+ image = pil_img2rgb(image)
514
+
515
+ # Set hyperparameters
516
+ inference_hyper = dict(
517
+ max_think_token_n=max_think_token_n if show_thinking else 1024,
518
+ do_sample=do_sample if show_thinking else False,
519
+ text_temperature=text_temperature if show_thinking else 0.3,
520
+ cfg_text_scale=cfg_text_scale,
521
+ cfg_img_scale=cfg_img_scale,
522
+ cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
523
+ timestep_shift=timestep_shift,
524
+ num_timesteps=num_timesteps,
525
+ cfg_renorm_min=cfg_renorm_min,
526
+ cfg_renorm_type=cfg_renorm_type,
527
+ )
528
+
529
+ # Include thinking parameter based on user choice
530
+ result = inferencer(image=image, text=prompt, think=show_thinking, **inference_hyper)
531
+
532
+ # --- add:record end_time ---
533
+ end_time = time.time()
534
+ duration = end_time - start_time
535
+ duration_str = f"{duration:.2f} seconds"
536
+ print(f"The image takes time: {duration_str}") # conslog
537
+
538
+ return result["image"], result.get("text", ""), duration_str
539
+
540
+
541
+ # Helper function to load example images
542
+ def load_example_image(image_path):
543
+ try:
544
+ return Image.open(image_path)
545
+ except Exception as e:
546
+ print(f"Error loading example image: {e}")
547
+ return None
548
+
549
+
550
+ # Gradio UI
551
+ with gr.Blocks() as demo:
552
+ gr.Markdown("""
553
+ <div>
554
+ <img src="https://lf3-static.bytednsdoc.com/obj/eden-cn/nuhojubrps/banner.png" alt="BAGEL" width="380"/>
555
+ </div>
556
+ """)
557
+
558
+ with gr.Tab("📝 Text to Image"):
559
+ txt_input = gr.Textbox(
560
+ label="Prompt",
561
+ value="A female cosplayer portraying an ethereal fairy or elf, wearing a flowing dress made of delicate fabrics in soft, mystical colors like emerald green and silver. She has pointed ears, a gentle, enchanting expression, and her outfit is adorned with sparkling jewels and intricate patterns. The background is a magical forest with glowing plants, mystical creatures, and a serene atmosphere."
562
+ )
563
+
564
+ with gr.Row():
565
+ show_thinking = gr.Checkbox(label="Thinking", value=False)
566
+
567
+ # Add hyperparameter controls in an accordion
568
+ with gr.Accordion("Inference Hyperparameters", open=False):
569
+ with gr.Group():
570
+ with gr.Row():
571
+ seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1,
572
+ label="Seed", info="0 for random seed, positive for reproducible results")
573
+ image_ratio = gr.Dropdown(choices=["1:1", "4:3", "3:4", "16:9", "9:16"],
574
+ value="1:1", label="Image Ratio",
575
+ info="The longer size is fixed to 1024")
576
+
577
+ with gr.Row():
578
+ cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True,
579
+ label="CFG Text Scale", info="Controls how strongly the model follows the text prompt (4.0-8.0)")
580
+ cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.1,
581
+ label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)")
582
+
583
+ with gr.Row():
584
+ cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"],
585
+ value="global", label="CFG Renorm Type",
586
+ info="If the genrated image is blurry, use 'global'")
587
+ cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
588
+ label="CFG Renorm Min", info="1.0 disables CFG-Renorm")
589
+
590
+ with gr.Row():
591
+ num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True,
592
+ label="Timesteps", info="Total denoising steps")
593
+ timestep_shift = gr.Slider(minimum=1.0, maximum=5.0, value=3.0, step=0.5, interactive=True,
594
+ label="Timestep Shift", info="Higher values for layout, lower for details")
595
+
596
+ # Thinking parameters in a single row
597
+ thinking_params = gr.Group(visible=False)
598
+ with thinking_params:
599
+ with gr.Row():
600
+ do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
601
+ max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True,
602
+ label="Max Think Tokens", info="Maximum number of tokens for thinking")
603
+ text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True,
604
+ label="Temperature", info="Controls randomness in text generation")
605
+
606
+ thinking_output = gr.Textbox(label="Thinking Process", visible=False)
607
+ img_output = gr.Image(label="Generated Image")
608
+ gen_btn = gr.Button("Generate", variant="primary")
609
+
610
+ # --- add:A text box used to display the generation time ---
611
+ generation_time_output = gr.Textbox(label="Processing Time", interactive=False)
612
+ # --- add end ---
613
+
614
+ # Dynamically show/hide thinking process box and parameters
615
+ def update_thinking_visibility(show):
616
+ return gr.update(visible=show), gr.update(visible=show)
617
+
618
+ show_thinking.change(
619
+ fn=update_thinking_visibility,
620
+ inputs=[show_thinking],
621
+ outputs=[thinking_output, thinking_params]
622
+ )
623
+
624
+ # Process function based on thinking option and hyperparameters
625
+ def process_text_to_image(prompt, show_thinking, cfg_text_scale,
626
+ cfg_interval, timestep_shift,
627
+ num_timesteps, cfg_renorm_min, cfg_renorm_type,
628
+ max_think_token_n, do_sample, text_temperature, seed, image_ratio):
629
+ image, thinking, duration_str = text_to_image(
630
+ prompt, show_thinking, cfg_text_scale, cfg_interval,
631
+ timestep_shift, num_timesteps,
632
+ cfg_renorm_min, cfg_renorm_type,
633
+ max_think_token_n, do_sample, text_temperature, seed, image_ratio
634
+ )
635
+ return image, thinking if thinking else "", duration_str
636
+
637
+ gr.on(
638
+ triggers=[gen_btn.click, txt_input.submit],
639
+ fn=process_text_to_image,
640
+ inputs=[
641
+ txt_input, show_thinking, cfg_text_scale,
642
+ cfg_interval, timestep_shift,
643
+ num_timesteps, cfg_renorm_min, cfg_renorm_type,
644
+ max_think_token_n, do_sample, text_temperature, seed, image_ratio
645
+ ],
646
+ # --- 这里是关键修改:确保 outputs 列表包含三个组件 ---
647
+ outputs=[img_output, thinking_output, generation_time_output]
648
+ # --- 修改结束 ---
649
+ )
650
+
651
+ with gr.Tab("🖌️ Image Edit"):
652
+ with gr.Row():
653
+ with gr.Column(scale=1):
654
+ edit_image_input = gr.Image(label="Input Image", value=load_example_image('test_images/women.jpg'))
655
+ edit_prompt = gr.Textbox(
656
+ label="Prompt",
657
+ value="She boards a modern subway, quietly reading a folded newspaper, wearing the same clothes."
658
+ )
659
+
660
+ with gr.Column(scale=1):
661
+ edit_image_output = gr.Image(label="Result")
662
+ edit_thinking_output = gr.Textbox(label="Thinking Process", visible=False)
663
+
664
+ with gr.Row():
665
+ edit_show_thinking = gr.Checkbox(label="Thinking", value=False)
666
+
667
+ # Add hyperparameter controls in an accordion
668
+ with gr.Accordion("Inference Hyperparameters", open=False):
669
+ with gr.Group():
670
+ with gr.Row():
671
+ edit_seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, interactive=True,
672
+ label="Seed", info="0 for random seed, positive for reproducible results")
673
+ edit_cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True,
674
+ label="CFG Text Scale", info="Controls how strongly the model follows the text prompt")
675
+
676
+ with gr.Row():
677
+ edit_cfg_img_scale = gr.Slider(minimum=1.0, maximum=4.0, value=2.0, step=0.1, interactive=True,
678
+ label="CFG Image Scale", info="Controls how much the model preserves input image details")
679
+ edit_cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
680
+ label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)")
681
+
682
+ with gr.Row():
683
+ edit_cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"],
684
+ value="text_channel", label="CFG Renorm Type",
685
+ info="If the genrated image is blurry, use 'global")
686
+ edit_cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
687
+ label="CFG Renorm Min", info="1.0 disables CFG-Renorm")
688
+
689
+ with gr.Row():
690
+ edit_num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True,
691
+ label="Timesteps", info="Total denoising steps")
692
+ edit_timestep_shift = gr.Slider(minimum=1.0, maximum=10.0, value=3.0, step=0.5, interactive=True,
693
+ label="Timestep Shift", info="Higher values for layout, lower for details")
694
+
695
+
696
+ # Thinking parameters in a single row
697
+ edit_thinking_params = gr.Group(visible=False)
698
+ with edit_thinking_params:
699
+ with gr.Row():
700
+ edit_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
701
+ edit_max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True,
702
+ label="Max Think Tokens", info="Maximum number of tokens for thinking")
703
+ edit_text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True,
704
+ label="Temperature", info="Controls randomness in text generation")
705
+
706
+ edit_btn = gr.Button("Submit", variant="primary")
707
+ # --- add:A text box used to display the generation time ---
708
+ edit_generation_time_output = gr.Textbox(label="Processing Time", interactive=False)
709
+ # --- add end ---
710
+
711
+ # Dynamically show/hide thinking process box for editing
712
+ def update_edit_thinking_visibility(show):
713
+ return gr.update(visible=show), gr.update(visible=show)
714
+
715
+ edit_show_thinking.change(
716
+ fn=update_edit_thinking_visibility,
717
+ inputs=[edit_show_thinking],
718
+ outputs=[edit_thinking_output, edit_thinking_params]
719
+ )
720
+
721
+ # Process editing with thinking option and hyperparameters
722
+ def process_edit_image(image, prompt, show_thinking, cfg_text_scale,
723
+ cfg_img_scale, cfg_interval,
724
+ timestep_shift, num_timesteps, cfg_renorm_min,
725
+ cfg_renorm_type, max_think_token_n, do_sample,
726
+ text_temperature, seed):
727
+ edited_image, thinking, duration_str = edit_image(
728
+ image, prompt, show_thinking, cfg_text_scale, cfg_img_scale,
729
+ cfg_interval, timestep_shift,
730
+ num_timesteps, cfg_renorm_min, cfg_renorm_type,
731
+ max_think_token_n, do_sample, text_temperature, seed
732
+ )
733
+
734
+ return edited_image, thinking if thinking else "", duration_str
735
+
736
+ gr.on(
737
+ triggers=[edit_btn.click, edit_prompt.submit],
738
+ fn=process_edit_image,
739
+ inputs=[
740
+ edit_image_input, edit_prompt, edit_show_thinking,
741
+ edit_cfg_text_scale, edit_cfg_img_scale, edit_cfg_interval,
742
+ edit_timestep_shift, edit_num_timesteps,
743
+ edit_cfg_renorm_min, edit_cfg_renorm_type,
744
+ edit_max_think_token_n, edit_do_sample, edit_text_temperature, edit_seed
745
+ ],
746
+ outputs=[edit_image_output, edit_thinking_output, edit_generation_time_output]
747
+ )
748
+
749
+ with gr.Tab("🖼️ Image Understanding"):
750
+ with gr.Row():
751
+ with gr.Column(scale=1):
752
+ img_input = gr.Image(label="Input Image", value=load_example_image('test_images/meme.jpg'))
753
+ understand_prompt = gr.Textbox(
754
+ label="Prompt",
755
+ value="Can someone explain what's funny about this meme??"
756
+ )
757
+
758
+ with gr.Column(scale=1):
759
+ txt_output = gr.Textbox(label="Result", lines=20)
760
+
761
+
762
+ with gr.Row():
763
+ understand_show_thinking = gr.Checkbox(label="Thinking", value=False)
764
+
765
+ # Add hyperparameter controls in an accordion
766
+ with gr.Accordion("Inference Hyperparameters", open=False):
767
+ with gr.Row():
768
+ understand_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
769
+ understand_text_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.3, step=0.05, interactive=True,
770
+ label="Temperature", info="Controls randomness in text generation (0=deterministic, 1=creative)")
771
+ understand_max_new_tokens = gr.Slider(minimum=64, maximum=4096, value=512, step=64, interactive=True,
772
+ label="Max New Tokens", info="Maximum length of generated text, including potential thinking")
773
+
774
+ img_understand_btn = gr.Button("Submit", variant="primary")
775
+ # --- add:A text box used to display the generation time ---
776
+ understand_generation_time_output = gr.Textbox(label="Processing Time", interactive=False)
777
+ # --- add end ---
778
+
779
+ # Process understanding with thinking option and hyperparameters
780
+ def process_understanding(image, prompt, show_thinking, do_sample,
781
+ text_temperature, max_new_tokens):
782
+ result, duration_str = image_understanding(
783
+ image, prompt, show_thinking, do_sample,
784
+ text_temperature, max_new_tokens
785
+ )
786
+ return result, duration_str
787
+
788
+ gr.on(
789
+ triggers=[img_understand_btn.click, understand_prompt.submit],
790
+ fn=process_understanding,
791
+ inputs=[
792
+ img_input, understand_prompt, understand_show_thinking,
793
+ understand_do_sample, understand_text_temperature, understand_max_new_tokens
794
+ ],
795
+ outputs=[txt_output, understand_generation_time_output]
796
+ )
797
+
798
+ gr.Markdown("""
799
+ <div style="display: flex; justify-content: flex-start; flex-wrap: wrap; gap: 10px;">
800
+ <a href="https://bagel-ai.org/">
801
+ <img
802
+ src="https://img.shields.io/badge/BAGEL-Website-0A66C2?logo=safari&logoColor=white"
803
+ alt="BAGEL Website"
804
+ />
805
+ </a>
806
+ <a href="https://arxiv.org/abs/2505.14683">
807
+ <img
808
+ src="https://img.shields.io/badge/BAGEL-Paper-red?logo=arxiv&logoColor=red"
809
+ alt="BAGEL Paper on arXiv"
810
+ />
811
+ </a>
812
+ <a href="https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT">
813
+ <img
814
+ src="https://img.shields.io/badge/BAGEL-Hugging%20Face-orange?logo=huggingface&logoColor=yellow"
815
+ alt="BAGEL on Hugging Face"
816
+ />
817
+ </a>
818
+ <a href="https://demo.bagel-ai.org/">
819
+ <img
820
+ src="https://img.shields.io/badge/BAGEL-Demo-blue?logo=googleplay&logoColor=blue"
821
+ alt="BAGEL Demo"
822
+ />
823
+ </a>
824
+ <a href="https://discord.gg/Z836xxzy">
825
+ <img
826
+ src="https://img.shields.io/badge/BAGEL-Discord-5865F2?logo=discord&logoColor=purple"
827
+ alt="BAGEL Discord"
828
+ />
829
+ </a>
830
+ <a href="mailto:[email protected]">
831
+ <img
832
+ src="https://img.shields.io/badge/BAGEL-Email-D14836?logo=gmail&logoColor=red"
833
+ alt="BAGEL Email"
834
+ />
835
+ </a>
836
+ </div>
837
+ """)
838
+ # --- add ram/vram Stats tab ---
839
+ with gr.Tab("📊 System Monitor"):
840
+ with gr.Column():
841
+ memory_stats_display = gr.Markdown("Check RAM/VRAM Stats")
842
+ refresh_button = gr.Button("🔄 Check RAM/VRAM Stats")
843
+
844
+ # When the button is clicked, the function get_all_memory_stats_for_gradio_display is called.
845
+ # And update its return value to the memory_stats_display component
846
+ refresh_button.click(
847
+ fn=get_all_memory_stats_for_gradio_display,
848
+ inputs=None,
849
+ outputs=[memory_stats_display]
850
+ )
851
+ # --- ram/vram Stats end ---
852
+
853
+ if __name__ == "__main__":
854
+ demo.launch(
855
+ server_name=args.server_name,
856
+ server_port=args.server_port,
857
+ share=args.share,
858
+ inbrowser=True,
859
+ )