Update README.md
#2
by
yuanzu
- opened
README.md
CHANGED
@@ -2,6 +2,37 @@
|
|
2 |
license: mit
|
3 |
library_name: transformers
|
4 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
# DeepSeek-R1
|
6 |
<!-- markdownlint-disable first-line-h1 -->
|
7 |
<!-- markdownlint-disable html -->
|
@@ -46,11 +77,6 @@ library_name: transformers
|
|
46 |
<a href="https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf"><b>Paper Link</b>👁️</a>
|
47 |
</p>
|
48 |
|
49 |
-
## 0. INT8 Quantization
|
50 |
-
|
51 |
-
We apply a INT8 quantization on the BF16 checkpoints, where weight scales are determined by dividing he block-wise maximum of element values by the INT8 type maximum.
|
52 |
-
The quantization script is provided in inference/bf16_case_int8.py.
|
53 |
-
|
54 |
## 1. Introduction
|
55 |
|
56 |
We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1.
|
|
|
2 |
license: mit
|
3 |
library_name: transformers
|
4 |
---
|
5 |
+
|
6 |
+
# Block-wise INT8 DeepSeek-R1
|
7 |
+
|
8 |
+
The INT8 data type is both friendly and efficient for most hardware platforms.
|
9 |
+
|
10 |
+
**We provide a block-wise INT8 weight for DeepSeek-R1.**
|
11 |
+
|
12 |
+
In benchmarking, we observe **no accuracy loss** and up to **30\%** performance enhancement.
|
13 |
+
|
14 |
+
[SGLang](https://github.com/sgl-project/sglang/tree/main) will soon support the block-wise INT8 quantization operation once our [PULL REQUEST](https://github.com/sgl-project/sglang/pull/3730) is merged.
|
15 |
+
|
16 |
+
## 1. Benchmarking Result (detailed in [PULL REQUEST](https://github.com/sgl-project/sglang/pull/3730)):
|
17 |
+
| Model | Config | Accuracy (GSM8K) | Accuracy (MMLU) | Output Throughput(qps=128) | Output Throughput(bs=1) |
|
18 |
+
|--------|--------|-------------------|----------------|------------------------------|--------------------------|
|
19 |
+
| BF16 R1 | (A100\*16)x2 | 95.8 | 87.1 | 4450.02 (+33%) | 44.18 (+18%) |
|
20 |
+
| INT8 R1 | A100\*32 | 95.5 | 87.1 | 3342.29 | 37.20 |
|
21 |
+
|
22 |
+
## 2. Quantization Process
|
23 |
+
|
24 |
+
We apply INT8 quantization to the BF16 checkpoints.
|
25 |
+
|
26 |
+
The weight scales are determined by dividing the block-wise maximum of element values by the INT8 type maximum.
|
27 |
+
|
28 |
+
To generate this weight, run the provided script in the ``./inference`` directory:
|
29 |
+
|
30 |
+
``
|
31 |
+
python3 bf16_case_int8.py --input-bf16-hf-path /path/to/bf16-weights/ --output-int8-hf-path /path/to/save-int8-weight/
|
32 |
+
``
|
33 |
+
|
34 |
+
---
|
35 |
+
|
36 |
# DeepSeek-R1
|
37 |
<!-- markdownlint-disable first-line-h1 -->
|
38 |
<!-- markdownlint-disable html -->
|
|
|
77 |
<a href="https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf"><b>Paper Link</b>👁️</a>
|
78 |
</p>
|
79 |
|
|
|
|
|
|
|
|
|
|
|
80 |
## 1. Introduction
|
81 |
|
82 |
We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1.
|