Qwen2.5-VL-7B-Instruct_arc-agi-transduction100k-images-ft-v1
This model is a fine-tuned version of Qwen/Qwen2.5-VL-7B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0501
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0447 | 1.0 | 2936 | 0.0768 |
0.0219 | 2.0 | 5872 | 0.0501 |
Framework versions
- Transformers 4.50.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.0.2
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for mertaylin/Qwen2.5-VL-7B-Instruct_arc-agi-transduction100k-images-ft-v1
Base model
Qwen/Qwen2.5-VL-7B-Instruct