paligemma_vqav2
This model is a fine-tuned version of google/paligemma-3b-pt-224 on a small chunk of vq_av2 dataset. Fine-tuning code is here.
How to Use
Below is the code to use this model. Also see inference notebook.
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from PIL import Image
import requests
model_id = "merve/paligemma_vqav2"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained("google/paligemma-3b-pt-224")
prompt = "What is behind the cat?"
image_file = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cat.png?download=true"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(prompt, raw_image.convert("RGB"), return_tensors="pt")
output = model.generate(**inputs, max_new_tokens=20)
print(processor.decode(output[0], skip_special_tokens=True)[len(prompt):])
# gramophone
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 2
Training results
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 212
Inference API (serverless) does not yet support transformers models for this pipeline type.
Model tree for merve/paligemma_vqav2
Base model
google/paligemma-3b-pt-224