Update README.md
#1
by
mervenoyan
- opened
README.md
CHANGED
@@ -2,29 +2,29 @@
|
|
2 |
tags:
|
3 |
- notebook
|
4 |
---
|
5 |
-
 | Knowledge distillation for image classification. |
|
22 |
-
| Quantization | [Fit in vision models using Quanto](https://
|
23 |
-
| Speed-up | [Faster foundation models with torch.compile](https://
|
24 |
-
| VLM Fine-tuning | [Fine-tune Florence-2](https://
|
25 |
-
| VLM Fine-tuning | [QLoRA/Fine-tune IDEFICS3 or SmolVLM on VQAv2](https://
|
26 |
-
| VLM Fine-tuning (Script) | [QLoRA Fine-tune IDEFICS3 on VQAv2](https://
|
27 |
-
| Multimodal RAG | [Multimodal RAG using ColPali and Qwen2-VL](https://
|
28 |
-
| Multimodal Retriever Fine-tuning | [Fine-tune ColPali for Multimodal RAG](https://
|
29 |
| Speed-up/Memory Optimization | Vision language model serving using TGI (SOON) | Explore speed-ups and memory improvements for vision-language model serving with text-generation inference |
|
30 |
| Quantization/Optimum/ORT | All levels of quantization and graph optimizations for Image Segmentation using Optimum (SOON) | End-to-end model optimization using Optimum |
|
|
|
2 |
tags:
|
3 |
- notebook
|
4 |
---
|
5 |
+

|
6 |
# Smol Vision π£
|
7 |
Recipes for shrinking, optimizing, customizing cutting edge vision and multimodal AI models.
|
8 |
|
9 |
Latest examples ππ»
|
10 |
+
- [Fine-tuning SmolVLM2 on Video Captioning](https://huggingface.co/merve/smol-vision/blob/main/Fine_tune_SmolVLM2_on_Video.ipynb)
|
11 |
+
- [Multimodal RAG using ColPali and Qwen2-VL](https://huggingface.co/merve/smol-vision/blob/main/ColPali_%2B_Qwen2_VL.ipynb)
|
12 |
+
- [Fine-tune ColPali for Multimodal RAG](https://huggingface.co/merve/smol-vision/blob/main/Finetune_ColPali.ipynb)
|
13 |
|
14 |
**Note**: The script and notebook are updated to fix few issues related to QLoRA!
|
15 |
|
16 |
| | Notebook | Description |
|
17 |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|
18 |
+
| Quantization/ONNX | [Faster and Smaller Zero-shot Object Detection with Optimum](https://huggingface.co/merve/smol-vision/blob/main/Faster_Zero_shot_Object_Detection_with_Optimum.ipynb) | Quantize the state-of-the-art zero-shot object detection model OWLv2 using Optimum ONNXRuntime tools. |
|
19 |
+
| VLM Fine-tuning | [Fine-tune PaliGemma](https://huggingface.co/merve/smol-vision/blob/main/Fine_tune_PaliGemma.ipynb) | Fine-tune state-of-the-art vision language backbone PaliGemma using transformers. |
|
20 |
+
| Intro to Optimum/ORT | [Optimizing DETR with π€ Optimum](https://huggingface.co/merve/smol-vision/blob/main/Reduce_any_model_to_fp16_using_%F0%9F%A4%97_Optimum_DETR.ipynb) | A soft introduction to exporting vision models to ONNX and quantizing them. |
|
21 |
| Model Shrinking | [Knowledge Distillation for Computer Vision](https://huggingface.co/docs/transformers/en/tasks/knowledge_distillation_for_image_classification) | Knowledge distillation for image classification. |
|
22 |
+
| Quantization | [Fit in vision models using Quanto](https://huggingface.co/merve/smol-vision/blob/main/Fit_in_vision_models_using_quanto.ipynb) | Fit in vision models to smaller hardware using quanto |
|
23 |
+
| Speed-up | [Faster foundation models with torch.compile](https://huggingface.co/merve/smol-vision/blob/main/Faster_foundation_models_with_torch_compile.ipynb) | Improving latency for foundation models using `torch.compile` |
|
24 |
+
| VLM Fine-tuning | [Fine-tune Florence-2](https://huggingface.co/merve/smol-vision/blob/main/Fine_tune_Florence_2.ipynb) | Fine-tune Florence-2 on DocVQA dataset |
|
25 |
+
| VLM Fine-tuning | [QLoRA/Fine-tune IDEFICS3 or SmolVLM on VQAv2](https://huggingface.co/merve/smol-vision/blob/main/Smol_VLM_FT.ipynb) | QLoRA/Full Fine-tune IDEFICS3 or SmolVLM on VQAv2 dataset |
|
26 |
+
| VLM Fine-tuning (Script) | [QLoRA Fine-tune IDEFICS3 on VQAv2](https://huggingface.co/merve/smol-vision/blob/main/smolvlm.py) | QLoRA/Full Fine-tune IDEFICS3 or SmolVLM on VQAv2 dataset |
|
27 |
+
| Multimodal RAG | [Multimodal RAG using ColPali and Qwen2-VL](https://huggingface.co/merve/smol-vision/blob/main/ColPali_%2B_Qwen2_VL.ipynb) | Learn to retrieve documents and pipeline to RAG without hefty document processing using ColPali through Byaldi and do the generation with Qwen2-VL |
|
28 |
+
| Multimodal Retriever Fine-tuning | [Fine-tune ColPali for Multimodal RAG](https://huggingface.co/merve/smol-vision/blob/main/Finetune_ColPali.ipynb) | Learn to apply contrastive fine-tuning on ColPali to customize it for your own multimodal document RAG use case |
|
29 |
| Speed-up/Memory Optimization | Vision language model serving using TGI (SOON) | Explore speed-ups and memory improvements for vision-language model serving with text-generation inference |
|
30 |
| Quantization/Optimum/ORT | All levels of quantization and graph optimizations for Image Segmentation using Optimum (SOON) | End-to-end model optimization using Optimum |
|