Update meshmodel.py
Browse files- meshmodel.py +87 -2
meshmodel.py
CHANGED
@@ -1,3 +1,88 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig, PreTrainedModel, AutoModelForCausalLM
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import math
|
6 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
7 |
|
8 |
+
class MeshModel(PreTrainedModel):
|
9 |
+
config_class = MeshConfig
|
10 |
+
|
11 |
+
def __init__(self, config: MeshConfig):
|
12 |
+
super().__init__(config)
|
13 |
+
self.config = config
|
14 |
+
|
15 |
+
self.embedding = nn.Embedding(config.vocab_size, config.hidden_size)
|
16 |
+
self.layers = nn.ModuleList([MeshLayer(config) for _ in range(config.num_hidden_layers)])
|
17 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps)
|
18 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
19 |
+
|
20 |
+
self.post_init()
|
21 |
+
|
22 |
+
def forward(
|
23 |
+
self,
|
24 |
+
input_ids=None,
|
25 |
+
attention_mask=None,
|
26 |
+
token_type_ids=None,
|
27 |
+
position_ids=None,
|
28 |
+
head_mask=None,
|
29 |
+
inputs_embeds=None,
|
30 |
+
encoder_hidden_states=None,
|
31 |
+
encoder_attention_mask=None,
|
32 |
+
labels=None,
|
33 |
+
past_key_values=None,
|
34 |
+
use_cache=None,
|
35 |
+
output_attentions=None,
|
36 |
+
output_hidden_states=None,
|
37 |
+
return_dict=None,
|
38 |
+
):
|
39 |
+
# Ensure return_dict is set to True by default if not specified
|
40 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
41 |
+
|
42 |
+
if input_ids is not None and inputs_embeds is not None:
|
43 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
44 |
+
elif input_ids is not None:
|
45 |
+
input_shape = input_ids.size()
|
46 |
+
inputs_embeds = self.embedding(input_ids)
|
47 |
+
elif inputs_embeds is not None:
|
48 |
+
input_shape = inputs_embeds.size()[:-1]
|
49 |
+
else:
|
50 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
51 |
+
|
52 |
+
hidden_states = inputs_embeds
|
53 |
+
expert_indices_list = [] # To collect expert indices from each layer
|
54 |
+
|
55 |
+
for i, layer in enumerate(self.layers):
|
56 |
+
hidden_states, expert_indices = layer(hidden_states)
|
57 |
+
expert_indices_list.append(expert_indices) # Collect indices
|
58 |
+
|
59 |
+
hidden_states = self.norm(hidden_states)
|
60 |
+
logits = self.lm_head(hidden_states)
|
61 |
+
|
62 |
+
loss = None
|
63 |
+
if labels is not None:
|
64 |
+
# Compute loss (e.g., CrossEntropyLoss)
|
65 |
+
loss_fct = nn.CrossEntropyLoss()
|
66 |
+
# Shift so that tokens < n predict n
|
67 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
68 |
+
shift_labels = labels[..., 1:].contiguous()
|
69 |
+
# Calculate scalar loss
|
70 |
+
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
|
71 |
+
|
72 |
+
# Return a CausalLMOutputWithPast object or a tuple
|
73 |
+
if return_dict:
|
74 |
+
return CausalLMOutputWithPast(
|
75 |
+
loss=loss,
|
76 |
+
logits=logits,
|
77 |
+
past_key_values=None, # Need to implement caching
|
78 |
+
hidden_states=hidden_states,
|
79 |
+
attentions=None, # Need to implement attention handling
|
80 |
+
)
|
81 |
+
else:
|
82 |
+
# Return a tuple including loss, logits, and collected expert indices
|
83 |
+
# Ensure the order and content match what the Trainer expects or can handle
|
84 |
+
# Trainer expects (loss, logits, hidden_states, attentions) or similar.
|
85 |
+
# We can return (loss, logits) as the primary outputs for the Trainer
|
86 |
+
# and potentially include expert_indices as an additional output if needed
|
87 |
+
# by a custom callback or logging, but the default Trainer expects loss as the first element for backward.
|
88 |
+
return (loss, logits, hidden_states, expert_indices_list) # Include expert_indices_list
|