Update meshlayer.py
Browse files- meshlayer.py +54 -2
meshlayer.py
CHANGED
@@ -1,3 +1,55 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig, PreTrainedModel, AutoModelForCausalLM # Import AutoModelForCausalLM
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import math
|
6 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast # Import the necessary output class
|
7 |
|
8 |
+
# Define the main Mesh Layer
|
9 |
+
class MeshLayer(nn.Module):
|
10 |
+
def __init__(self, config: MeshConfig):
|
11 |
+
super().__init__()
|
12 |
+
self.config = config
|
13 |
+
self.router = MeshRouter(config)
|
14 |
+
self.experts = nn.ModuleList([MeshExpert(config) for _ in range(config.mesh_grid_size[0] * config.mesh_grid_size[1])])
|
15 |
+
self.neighbor_exchange = NeighborExchange(config)
|
16 |
+
self.cross_expert_attention = CrossExpertAttention(config)
|
17 |
+
|
18 |
+
def forward(self, hidden_states):
|
19 |
+
# hidden_states shape: (batch_size, sequence_length, hidden_size)
|
20 |
+
|
21 |
+
# 1. Routing
|
22 |
+
topk_weights, topk_indices = self.router(hidden_states)
|
23 |
+
# topk_weights shape: (batch_size, sequence_length, k)
|
24 |
+
# topk_indices shape: (batch_size, sequence_length, k)
|
25 |
+
|
26 |
+
# Prepare expert inputs: repeat hidden_states for each expert
|
27 |
+
# shape: (batch_size, sequence_length, num_experts, hidden_size)
|
28 |
+
expanded_hidden_states = hidden_states.unsqueeze(2).expand(-1, -1, self.config.mesh_grid_size[0] * self.config.mesh_grid_size[1], -1)
|
29 |
+
|
30 |
+
# 2. Expert Computation
|
31 |
+
# Compute output for all experts (can be optimized to only compute for selected experts)
|
32 |
+
expert_outputs = torch.stack([expert(expanded_hidden_states[:, :, i, :]) for i, expert in enumerate(self.experts)], dim=2)
|
33 |
+
# expert_outputs shape: (batch_size, sequence_length, num_experts, hidden_size)
|
34 |
+
|
35 |
+
# 3. Neighbor Exchange (conceptual implementation needed)
|
36 |
+
exchanged_expert_outputs = self.neighbor_exchange(expert_outputs, topk_indices)
|
37 |
+
|
38 |
+
# 4. Cross-Expert Attention (conceptual implementation needed)
|
39 |
+
cross_attned_expert_outputs = self.cross_expert_attention(exchanged_expert_outputs)
|
40 |
+
|
41 |
+
# 5. Combine expert outputs based on routing weights
|
42 |
+
# Create a tensor to gather the outputs of the selected experts
|
43 |
+
# shape: (batch_size, sequence_length, k, hidden_size)
|
44 |
+
gathered_outputs = torch.gather(
|
45 |
+
cross_attned_expert_outputs,
|
46 |
+
dim=2,
|
47 |
+
index=topk_indices.unsqueeze(-1).expand(-1, -1, -1, self.config.hidden_size)
|
48 |
+
)
|
49 |
+
|
50 |
+
# Apply routing weights: (batch_size, sequence_length, k, 1) * (batch_size, sequence_length, k, hidden_size)
|
51 |
+
combined_output = (gathered_outputs * topk_weights.unsqueeze(-1)).sum(dim=2)
|
52 |
+
# combined_output shape: (batch_size, sequence_length, hidden_size)
|
53 |
+
|
54 |
+
# Return the combined output and the expert indices for potential visualization
|
55 |
+
return combined_output, topk_indices # Return combined output and expert indices
|