Model Card for Model ID

Model Details

Model Description

  • Developed by: Mohammad Essam (metga97)
  • Model type: BERT-style encoder
  • Language(s): Arabic (MSA + Egyptian dialect)
  • License: MIT
  • Finetuned from model: metga97/Modern-EgyBert-Base

Uses

This model is intended to be used for generating sentence embeddings for downstream tasks:

  • Sentence similarity
  • Semantic retrieval
  • Clustering of Arabic sentences
  • Intent classification
  • Duplicate detection

How to Get Started with the Model

Use the code below to get started with the model.

from transformers import AutoTokenizer, AutoModel
import torch

tokenizer = AutoTokenizer.from_pretrained("metga97/Modern-EgyBert-Embedding")
model = AutoModel.from_pretrained("metga97/Modern-EgyBert-Embedding")

text = ["ุงู„ุฌูˆ ุงู„ู†ู‡ุงุฑุฏู‡ ุฌู…ูŠู„"]
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)

with torch.no_grad():
    outputs = model(**inputs)
    last_hidden = outputs.last_hidden_state

# Mean Pooling
attention_mask = inputs["attention_mask"]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(last_hidden.size()).float()
sum_embeddings = torch.sum(last_hidden * input_mask_expanded, dim=1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentence_embedding = sum_embeddings / sum_mask

print(sentence_embedding.shape)  # torch.Size([1, 768])
Downloads last month
16
Safetensors
Model size
159M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support