mfarrington's picture
End of training
1d5bf82 verified
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: device_recalls_ner_baseline
    results: []

device_recalls_ner_baseline

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0010
  • Precision: 0.5161
  • Recall: 0.5087
  • F1: 0.5124
  • Accuracy: 0.7492

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 101 0.6541 0.4257 0.3396 0.3778 0.6959
No log 2.0 202 0.5924 0.4803 0.4754 0.4779 0.7429
No log 3.0 303 0.6068 0.4826 0.5 0.4911 0.7283
No log 4.0 404 0.6778 0.4350 0.5173 0.4726 0.7079
0.501 5.0 505 0.7109 0.4876 0.5101 0.4986 0.7359
0.501 6.0 606 0.7291 0.4929 0.5043 0.4986 0.7448
0.501 7.0 707 0.8655 0.5338 0.4798 0.5053 0.7537
0.501 8.0 808 0.8715 0.5055 0.5275 0.5163 0.7460
0.501 9.0 909 1.0034 0.5027 0.5390 0.5202 0.7467
0.1555 10.0 1010 1.0010 0.5161 0.5087 0.5124 0.7492

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1