mhlongoke91's picture
Upload processor
73abbc4 verified
|
raw
history blame
2.2 kB
metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_0
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-mongolian-colab-CV16.0
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_16_0
          type: common_voice_16_0
          config: mn
          split: test
          args: mn
        metrics:
          - type: wer
            value: 0.965662968832541
            name: Wer

w2v-bert-2.0-mongolian-colab-CV16.0

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_16_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6984
  • Wer: 0.9657

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.4128 1.9763 500 3.2537 1.0
1.7038 3.9526 1000 1.5989 1.0
0.722 5.9289 1500 0.9174 0.9878
0.4558 7.9051 2000 0.7443 0.9746
0.3257 9.8814 2500 0.6984 0.9657

Framework versions

  • Transformers 4.51.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.21.1