YAML Metadata
Warning:
The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
π¦ LLaMA 2 7B + TAT FinQA Adapter (Merged, Pre-CoT)
Repo: michael-sigamani/llama2-7b-tat-lora-fp16
Base: NousResearch/Llama-2-7b-hf
Adapter: next-tat/tat-llm-7b-lora
Merged: β
Yes
Fine-tuned: β Not yet (this is the pre-CoT stage)
Format: Float16 (fp16)
π Overview
This model merges a FinQA-tuned adapter (TAT) into LLaMA 2 7B, producing a standalone checkpoint ready for further fine-tuning or inference on financial reasoning tasks.
- π Finetuned LoRA (TAT) captures scalar reasoning from FinQA
- π Merged via
peft.merge_and_unload()
into the full model - π§΅ Next step: fine-tune on
train_turn.jsonl
with chain-of-thought (CoT) supervision
π Intended Usage
Use this model as the starting point for:
- π§ Fine-tuning on CoT financial datasets (e.g. ConvFinQA turn-based reasoning)
- π§ͺ Evaluation on scalar, program, and reasoning benchmarks
- π¦ Export to GGUF for Ollama / llama.cpp
π§ Not a Final Model
This checkpoint has not been CoT fine-tuned yet. It is the output of:
Base: NousResearch/Llama-2-7b-hf
LoRA: next-tat/tat-llm-7b-lora (FinQA-style)
Merged: Yes (fp16, no adapter required)
Next step: Train on chain-of-thought examples (train_turn.jsonl
) using Unsloth or PEFT + TRL.
π§ Merge Script
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
base_model = AutoModelForCausalLM.from_pretrained("NousResearch/Llama-2-7b-hf")
adapter = PeftModel.from_pretrained(base_model, "next-tat/tat-llm-7b-lora")
merged = adapter.merge_and_unload()
merged.save_pretrained("llama2-7b-tat-lora-fp16")
AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-hf").save_pretrained("llama2-7b-tat-lora-fp16")
π§βπ» Maintainer
Michael Sigamani
github.com/sigamani
π License
- Base: Meta LLaMA 2 license (via NousResearch)
- Adapter: Apache 2.0
- Merged model: Inherits original LLaMA 2 license β requires HF auth
- Downloads last month
- 6
Model tree for michael-sigamani/llama2-7b-tat-convfinqa-fp16
Base model
NousResearch/Llama-2-7b-hf