deberta-xlarge / README.md
Pengcheng He
Create deberta xlarge 750M model
1f2d52b
|
raw
history blame
1.7 kB
metadata
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
license: mit

DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.

Please check the official repository for more details and updates.

This the DeBERTa xlarge model with 48 layers, 1024 hidden size. Total parameters 750M.

Fine-tuning on NLU tasks

We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.

Model SQuAD 1.1 SQuAD 2.0 MNLI-m SST-2 QNLI CoLA RTE MRPC QQP STS-B
BERT-Large 90.9/84.1 81.8/79.0 86.6 93.2 92.3 60.6 70.4 88.0 91.3 90.0
RoBERTa-Large 94.6/88.9 89.4/86.5 90.2 96.4 93.9 68.0 86.6 90.9 92.2 92.4
XLNet-Large 95.1/89.7 90.6/87.9 90.8 97.0 94.9 69.0 85.9 90.8 92.3 92.5
DeBERTa-Large 95.5/90.1 90.7/88.0 91.1 96.5 95.3 69.5 88.1 92.5 92.3 92.5

Citation

If you find DeBERTa useful for your work, please cite the following paper:

@misc{he2020deberta,
    title={DeBERTa: Decoding-enhanced BERT with Disentangled Attention},
    author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
    year={2020},
    eprint={2006.03654},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
        }