metadata
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
license: mit
DeBERTa: Decoding-enhanced BERT with Disentangled Attention
DeBERTa improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.
Please check the official repository for more details and updates.
This the DeBERTa xlarge model with 48 layers, 1024 hidden size. Total parameters 750M.
Fine-tuning on NLU tasks
We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m | SST-2 | QNLI | CoLA | RTE | MRPC | QQP | STS-B |
---|---|---|---|---|---|---|---|---|---|---|
BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6 | 93.2 | 92.3 | 60.6 | 70.4 | 88.0 | 91.3 | 90.0 |
RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2 | 96.4 | 93.9 | 68.0 | 86.6 | 90.9 | 92.2 | 92.4 |
XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8 | 97.0 | 94.9 | 69.0 | 85.9 | 90.8 | 92.3 | 92.5 |
DeBERTa-Large | 95.5/90.1 | 90.7/88.0 | 91.1 | 96.5 | 95.3 | 69.5 | 88.1 | 92.5 | 92.3 | 92.5 |
Citation
If you find DeBERTa useful for your work, please cite the following paper:
@misc{he2020deberta,
title={DeBERTa: Decoding-enhanced BERT with Disentangled Attention},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
year={2020},
eprint={2006.03654},
archivePrefix={arXiv},
primaryClass={cs.CL}
}