metadata
license: cc-by-sa-4.0
base_model: klue/bert-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: bert-base-finetuned-ynat
results: []
bert-base-finetuned-ynat
This model is a fine-tuned version of klue/bert-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5973
- F1: 0.0727
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 1 | 1.5973 | 0.0727 |
No log | 2.0 | 2 | 1.5919 | 0.0667 |
No log | 3.0 | 3 | 1.5840 | 0.0667 |
No log | 4.0 | 4 | 1.5747 | 0.0667 |
No log | 5.0 | 5 | 1.5678 | 0.0667 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3