wav2vec2-base-north-vi
This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on the nguyendv02/ViMD_Dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.3268
- Wer: 0.1288
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.2171 | 0.2164 | 40 | 0.3531 | 0.2336 |
0.527 | 0.4327 | 80 | 0.3674 | 0.1767 |
0.5245 | 0.6491 | 120 | 0.3467 | 0.1967 |
0.5189 | 0.8654 | 160 | 0.3635 | 0.1812 |
0.4589 | 1.0811 | 200 | 0.3410 | 0.1807 |
0.442 | 1.2975 | 240 | 0.3382 | 0.1764 |
0.4528 | 1.5139 | 280 | 0.3404 | 0.1713 |
1.1344 | 1.7302 | 320 | 0.3403 | 0.1843 |
0.4726 | 1.9466 | 360 | 0.3365 | 0.1762 |
0.475 | 2.1623 | 400 | 0.3442 | 0.1729 |
0.4345 | 2.3786 | 440 | 0.3317 | 0.1706 |
0.4249 | 2.5950 | 480 | 0.3149 | 0.1769 |
0.4385 | 2.8114 | 520 | 0.3281 | 0.1646 |
1.119 | 3.0270 | 560 | 0.3422 | 0.1613 |
0.4082 | 3.2434 | 600 | 0.3449 | 0.1680 |
1.0262 | 3.4598 | 640 | 0.3459 | 0.1630 |
0.411 | 3.6761 | 680 | 0.3157 | 0.1744 |
0.3922 | 3.8925 | 720 | 0.3347 | 0.1672 |
0.408 | 4.1082 | 760 | 0.3260 | 0.1619 |
0.3922 | 4.3245 | 800 | 0.3212 | 0.1718 |
0.4002 | 4.5409 | 840 | 0.3212 | 0.2031 |
0.399 | 4.7573 | 880 | 0.3207 | 0.1677 |
0.418 | 4.9736 | 920 | 0.3392 | 0.1605 |
0.379 | 5.1893 | 960 | 0.3145 | 0.1718 |
0.3729 | 5.4057 | 1000 | 0.3234 | 0.1665 |
0.3675 | 5.6220 | 1040 | 0.3262 | 0.1663 |
0.3941 | 5.8384 | 1080 | 0.3375 | 0.1580 |
0.3763 | 6.0541 | 1120 | 0.3199 | 0.1701 |
0.3567 | 6.2705 | 1160 | 0.3267 | 0.1651 |
0.3521 | 6.4868 | 1200 | 0.3184 | 0.1572 |
0.3464 | 6.7032 | 1240 | 0.3357 | 0.1621 |
0.3413 | 6.9195 | 1280 | 0.3094 | 0.1590 |
0.3563 | 7.1352 | 1320 | 0.3343 | 0.1600 |
0.356 | 7.3516 | 1360 | 0.3285 | 0.1561 |
0.3599 | 7.5680 | 1400 | 0.3299 | 0.1573 |
0.3497 | 7.7843 | 1440 | 0.3299 | 0.1540 |
0.8469 | 8.0 | 1480 | 0.3199 | 0.1549 |
0.3352 | 8.2164 | 1520 | 0.3173 | 0.1670 |
0.3362 | 8.4327 | 1560 | 0.3256 | 0.1550 |
0.3468 | 8.6491 | 1600 | 0.3241 | 0.1615 |
0.3352 | 8.8654 | 1640 | 0.3219 | 0.1580 |
0.3588 | 9.0811 | 1680 | 0.3256 | 0.1534 |
0.3077 | 9.2975 | 1720 | 0.3384 | 0.1564 |
0.3169 | 9.5139 | 1760 | 0.3272 | 0.1495 |
0.3406 | 9.7302 | 1800 | 0.3249 | 0.1553 |
0.3341 | 9.9466 | 1840 | 0.3250 | 0.1531 |
0.3071 | 10.1623 | 1880 | 0.3522 | 0.1493 |
0.2924 | 10.3786 | 1920 | 0.3201 | 0.1553 |
0.3378 | 10.5950 | 1960 | 0.3238 | 0.1528 |
0.3234 | 10.8114 | 2000 | 0.3344 | 0.1555 |
0.3143 | 11.0270 | 2040 | 0.3269 | 0.1558 |
0.3023 | 11.2434 | 2080 | 0.3220 | 0.1565 |
0.2961 | 11.4598 | 2120 | 0.3187 | 0.1721 |
0.2995 | 11.6761 | 2160 | 0.3464 | 0.1527 |
0.3251 | 11.8925 | 2200 | 0.3225 | 0.1539 |
0.3395 | 12.1082 | 2240 | 0.3360 | 0.1539 |
0.3158 | 12.3245 | 2280 | 0.3173 | 0.1496 |
0.311 | 12.5409 | 2320 | 0.3302 | 0.1473 |
0.284 | 12.7573 | 2360 | 0.3399 | 0.1500 |
0.3092 | 12.9736 | 2400 | 0.3245 | 0.1509 |
0.3245 | 13.1893 | 2440 | 0.3281 | 0.1503 |
0.3889 | 13.4057 | 2480 | 0.3419 | 0.1495 |
0.2609 | 13.6220 | 2520 | 0.3403 | 0.1480 |
0.2769 | 13.8384 | 2560 | 0.3264 | 0.1483 |
0.2643 | 14.0541 | 2600 | 0.3315 | 0.1574 |
0.2804 | 14.2705 | 2640 | 0.3357 | 0.1489 |
0.2668 | 14.4868 | 2680 | 0.3186 | 0.1456 |
0.2739 | 14.7032 | 2720 | 0.3407 | 0.1492 |
0.263 | 14.9195 | 2760 | 0.3306 | 0.1491 |
0.2582 | 15.1352 | 2800 | 0.3307 | 0.1473 |
0.2787 | 15.3516 | 2840 | 0.3310 | 0.1520 |
0.276 | 15.5680 | 2880 | 0.3270 | 0.1486 |
0.2758 | 15.7843 | 2920 | 0.3370 | 0.1471 |
0.292 | 16.0 | 2960 | 0.3456 | 0.1451 |
0.2643 | 16.2164 | 3000 | 0.3384 | 0.1499 |
0.2707 | 16.4327 | 3040 | 0.3460 | 0.1444 |
0.2606 | 16.6491 | 3080 | 0.3355 | 0.1462 |
0.2554 | 16.8654 | 3120 | 0.3534 | 0.1441 |
0.2484 | 17.0811 | 3160 | 0.3466 | 0.1517 |
0.231 | 17.2975 | 3200 | 0.3353 | 0.1454 |
0.2502 | 17.5139 | 3240 | 0.3406 | 0.1464 |
0.2574 | 17.7302 | 3280 | 0.3347 | 0.1451 |
0.2339 | 17.9466 | 3320 | 0.3430 | 0.1490 |
0.2305 | 18.1623 | 3360 | 0.3472 | 0.1476 |
0.2415 | 18.3786 | 3400 | 0.3393 | 0.1455 |
0.2579 | 18.5950 | 3440 | 0.3396 | 0.1466 |
0.254 | 18.8114 | 3480 | 0.3443 | 0.1436 |
0.2292 | 19.0270 | 3520 | 0.3503 | 0.1454 |
0.2358 | 19.2434 | 3560 | 0.3547 | 0.1447 |
0.231 | 19.4598 | 3600 | 0.3545 | 0.1436 |
0.2542 | 19.6761 | 3640 | 0.3432 | 0.1426 |
0.2466 | 19.8925 | 3680 | 0.3539 | 0.1403 |
0.2367 | 20.1082 | 3720 | 0.3458 | 0.1453 |
0.2196 | 20.3245 | 3760 | 0.3460 | 0.1412 |
0.2126 | 20.5409 | 3800 | 0.3539 | 0.1466 |
0.2254 | 20.7573 | 3840 | 0.3561 | 0.1400 |
0.2301 | 20.9736 | 3880 | 0.3446 | 0.1428 |
0.2157 | 21.1893 | 3920 | 0.3542 | 0.1432 |
0.2157 | 21.4057 | 3960 | 0.3557 | 0.1400 |
0.2172 | 21.6220 | 4000 | 0.3438 | 0.1408 |
0.1969 | 21.8384 | 4040 | 0.3538 | 0.1451 |
0.2001 | 22.0541 | 4080 | 0.3578 | 0.1415 |
0.23 | 22.2705 | 4120 | 0.3501 | 0.1414 |
0.2285 | 22.4868 | 4160 | 0.3622 | 0.1403 |
0.2049 | 22.7032 | 4200 | 0.3649 | 0.1397 |
0.2228 | 22.9195 | 4240 | 0.3602 | 0.1391 |
0.2393 | 23.1352 | 4280 | 0.3624 | 0.1386 |
0.2116 | 23.3516 | 4320 | 0.3548 | 0.1374 |
0.256 | 23.5680 | 4360 | 0.3536 | 0.1399 |
0.2157 | 23.7843 | 4400 | 0.3670 | 0.1380 |
0.2155 | 24.0 | 4440 | 0.3596 | 0.1399 |
0.1938 | 24.2164 | 4480 | 0.3637 | 0.1407 |
0.1972 | 24.4327 | 4520 | 0.3733 | 0.1372 |
0.2142 | 24.6491 | 4560 | 0.3579 | 0.1399 |
0.2092 | 24.8654 | 4600 | 0.3647 | 0.1361 |
0.3059 | 25.0811 | 4640 | 0.3707 | 0.1387 |
0.2014 | 25.2975 | 4680 | 0.3723 | 0.1352 |
0.2116 | 25.5139 | 4720 | 0.3629 | 0.1374 |
0.1854 | 25.7302 | 4760 | 0.3624 | 0.1371 |
0.2074 | 25.9466 | 4800 | 0.3873 | 0.1345 |
0.2034 | 26.1623 | 4840 | 0.3603 | 0.1376 |
0.1893 | 26.3786 | 4880 | 0.3761 | 0.1369 |
0.1859 | 26.5950 | 4920 | 0.3737 | 0.1354 |
0.2076 | 26.8114 | 4960 | 0.3528 | 0.1372 |
0.1879 | 27.0270 | 5000 | 0.3657 | 0.1356 |
0.1927 | 27.2434 | 5040 | 0.3637 | 0.1351 |
0.2059 | 27.4598 | 5080 | 0.3789 | 0.1341 |
0.1751 | 27.6761 | 5120 | 0.3671 | 0.1355 |
0.1864 | 27.8925 | 5160 | 0.3657 | 0.1348 |
0.1822 | 28.1082 | 5200 | 0.3653 | 0.1358 |
0.1955 | 28.3245 | 5240 | 0.3719 | 0.1356 |
0.194 | 28.5409 | 5280 | 0.3706 | 0.1360 |
0.1888 | 28.7573 | 5320 | 0.3700 | 0.1358 |
0.1954 | 28.9736 | 5360 | 0.3664 | 0.1347 |
0.1897 | 29.1893 | 5400 | 0.3687 | 0.1350 |
0.1851 | 29.4057 | 5440 | 0.3664 | 0.1356 |
0.182 | 29.6220 | 5480 | 0.3674 | 0.1354 |
0.187 | 29.8384 | 5520 | 0.3651 | 0.1348 |
Framework versions
- Transformers 4.53.0
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 100
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for minhtien2405/wav2vec2-base-north-vi
Base model
nguyenvulebinh/wav2vec2-base-vietnamese-250h