|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: COLOR WOW Xtra 대형 봄쉘 볼류마이저 6.5 Ounce 6.5 Ounce 모모나미 |
|
- text: 헤어젤슈퍼하드400ml 과일나라 컨퓸 MWB794D8 옵션없음 하니스토어04 |
|
- text: 메온셀 GRAFEN 다운펌약 남자다운펌 옆머리누르기 셀프매직약 A 세일몬스터 |
|
- text: '[6월7일 이후 배송] 브리티시엠 어반 매트 클레이 100g / URBAN MATTE CLAY 헤어 왁스 미용실 강력 짧은머리 고정 |
|
남자머리 셋팅 선택X (파우치 필요없어요) (주)컨템포' |
|
- text: Aveda Phomollient Styling Foam 6.7 oz (관부가세포함) 옵션없음 제이글로벌컴퍼니 |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.7192224622030238 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 6 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 0.0 | <ul><li>'MANIC PANIC 매닉 패닉 Bad Boy Blue 배드 보이 블루 옵션없음 제이(J) 커머스'</li><li>'미쟝센 올뉴 쉽고빠른 거품 염색약 5N 갈색 1개 옵션없음 트레이딩제이'</li><li>'376252 씨드비 물염색 시즌2 씨비드 4회분 미디엄브라운 NEW 비건 미디엄 브라운 1박스_◈232431989◈ 제이제이홀딩스'</li></ul> | |
|
| 3.0 | <ul><li>'로레알 테크니아트 픽스 디자인 스프레이 200ml 옵션없음 파스텔뷰티'</li><li>'과일나라 컨퓸 슈퍼하드 워터스프레이 252ml 옵션없음 다인유통'</li><li>'폴미첼 프리즈 앤 슈퍼 샤인 스프레이 250ml 옵션없음 다사다 유한책임회사'</li></ul> | |
|
| 4.0 | <ul><li>'미쟝센 파워스윙 슈퍼하드 크림 왁스 9 미디움 리젠트업 80g 옵션없음 와라즈'</li><li>'Loma Hair Care 3525927124 LOMA 포밍 페이스트 85g(3온스) 옵션없음 넥스유로(NEXEURO)'</li><li>'차홍 왁스 쉬폰 소프트 80ml 부드러운 크림제형 옵션없음 박예찬'</li></ul> | |
|
| 1.0 | <ul><li>'모레모 케라틴 셀프 다운 펌 6개 100g 옵션없음 건강드림'</li><li>'다주자 울트라 다운펌150ml 남자다운펌 여성매직펌 잔머리펌 다운펌set 옵션없음 포비티엘'</li><li>'미용실 다운펌약 집에서 옆머리 누르기 올리브영 악성곱슬 남자 셀프 다운펌 옵션없음 새벽 마트'</li></ul> | |
|
| 5.0 | <ul><li>'꽃을든남자 초강력헤어젤 500ml 옵션없음 태은코리아'</li><li>'lg생활건강 아르드포 헤어젤 펌프형 300ml 옵션없음 맥센 트레이드'</li><li>'Ecoco 에코 스타일러 크리스탈 스타일링 젤 453g (3팩) 옵션없음 세렌몰1'</li></ul> | |
|
| 2.0 | <ul><li>'밀본 니제르 클러치피즈 하이 클러치피즈 200g 헤어무스 헤어팟'</li><li>'갸스비 수퍼하드 스타일링폼 무스 185ml 홈쇼핑 동일상품 수퍼하드 스타일링폼 무스 185ml 제이에스유통'</li><li>'꽃을든남자 스타일링 헤어 무스 300ml 퀸뷰티'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.7192 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_bt11_test") |
|
# Run inference |
|
preds = model("헤어젤슈퍼하드400ml 과일나라 컨퓸 MWB794D8 옵션없음 하니스토어04") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 5 | 9.4957 | 26 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 25 | |
|
| 1.0 | 19 | |
|
| 2.0 | 15 | |
|
| 3.0 | 25 | |
|
| 4.0 | 19 | |
|
| 5.0 | 14 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (50, 50) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 60 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0714 | 1 | 0.4886 | - | |
|
| 3.5714 | 50 | 0.3088 | - | |
|
| 7.1429 | 100 | 0.049 | - | |
|
| 10.7143 | 150 | 0.0043 | - | |
|
| 14.2857 | 200 | 0.0001 | - | |
|
| 17.8571 | 250 | 0.0001 | - | |
|
| 21.4286 | 300 | 0.0001 | - | |
|
| 25.0 | 350 | 0.0001 | - | |
|
| 28.5714 | 400 | 0.0001 | - | |
|
| 32.1429 | 450 | 0.0001 | - | |
|
| 35.7143 | 500 | 0.0001 | - | |
|
| 39.2857 | 550 | 0.0001 | - | |
|
| 42.8571 | 600 | 0.0001 | - | |
|
| 46.4286 | 650 | 0.0001 | - | |
|
| 50.0 | 700 | 0.0001 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.2.0a0+81ea7a4 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |