Comparison Table of Test Results by Model (BFCL)
Test Item | Model: tool | Model: base | Score Difference (tool - base) |
---|---|---|---|
irrelevance | 0.8417 | 0.8750 | -0.0333 |
multi_turn_base | 0.1050 | 0.0850 | +0.0200 |
parallel_multiple | 0.0000 | 0.8900 | -0.8900 |
parallel | 0.0000 | 0.8850 | -0.8850 |
simple | 0.9350 | 0.9325 | +0.0025 |
multiple | 0.9450 | 0.9200 | +0.0250 |
The model learned pretty well. In fact, it is normal because there is no parallel call data in the training data and no irrelevance data.
See axolotl config
axolotl version: 0.10.0.dev0
base_model: Qwen/Qwen3-4B
hub_model_id: minpeter/LoRA-Qwen3-4b-v1-iteration-02-sf-apigen-02
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false
datasets:
- path: minpeter/apigen-mt-5k-friendli
data_files:
- train.jsonl
- test.jsonl
type: chat_template
roles_to_train: ["assistant"]
field_messages: messages
message_property_mappings:
role: role
content: content
chat_template: chatml
dataset_prepared_path: last_run_prepared
output_dir: ./output
val_set_size: 0.0
sequence_len: 20000
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
load_in_4bit: true
adapter: qlora
lora_r: 16
lora_alpha: 32
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- down_proj
- up_proj
lora_mlp_kernel: true
lora_qkv_kernel: true
lora_o_kernel: true
wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch_4bit
lr_scheduler: cosine
learning_rate: 0.0002
bf16: auto
tf32: true
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
LoRA-Qwen3-4b-v1-iteration-02-sf-apigen-02
This model is a fine-tuned version of Qwen/Qwen3-4B on the minpeter/apigen-mt-5k-friendli dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_TORCH_4BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0
Training results
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support