Built with Axolotl

See axolotl config

axolotl version: 0.11.0.dev0

base_model: minpeter/tiny-ko-124m-base

hub_model_id: minpeter/tiny-ko-124m-sft
output_dir: ./outputs/tiny-ko-124m-sft
wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"

model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

strict: false

chat_template: chatml
datasets:
  - path: lemon-mint/Korean-FineTome-100k
    type: chat_template
    split: train
    field_messages: messages
    message_property_mappings:
      role: role
      content: content

  - path: lemon-mint/smol-koreantalk
    type: chat_template
    split: train
    field_messages: messages
    message_property_mappings:
      role: role
      content: content

  - path: heegyu/open-korean-instructions-v20231020
    type: chat_template
    split: train
    field_messages: conversations
    message_property_mappings:
      role: from
      content: value
    roles:
      user: ["human", "user"]
      assistant: ["gpt", "assistant", "bot"]
      system: ["system", "input"]
  - path: trillionlabs/multisystem-curated
    type: chat_template
    split: train
    field_messages: messages
    message_property_mappings:
      role: role
      content: content
  - path: allenai/tulu-3-sft-personas-instruction-following
    type: chat_template
    split: train
    field_messages: messages
    message_property_mappings:
      role: role
      content: content
  - path: coastral/korean-writing-style-instruct
    type: chat_template
    split: train
    field_messages: conversations
    message_property_mappings:
      role: from
      content: value

  - path: devngho/korean-instruction-mix
    type: chat_template
    split: train
    field_messages: messages
    message_property_mappings:
      role: from
      content: value

  - path: youjunhyeok/Magpie-Pro-300K-Filtered-ko
    type: chat_template
    split: train
    field_messages: conversations
    message_property_mappings:
      role: from
      content: value

  - path: youjunhyeok/smoltalk-ko-translate
    type: chat_template
    split: train
    name: merge_filtered
    field_messages: conversations
    message_property_mappings:
      role: role
      content: content

dataset_prepared_path: last_run_prepared
val_set_size: 0.001
save_safetensors: true
sequence_len: 2048
sample_packing: false
pad_to_sequence_len: false
use_pose: true
pose_max_context_len: 65536

overrides_of_model_config:
  rope_theta: 10000.0
  max_position_embeddings: 65536

gradient_accumulation_steps: 8
micro_batch_size: 32
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 3e-4

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: true

gradient_checkpointing: false
gradient_checkpointing_kwargs:
  use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
sdp_attention:
s2_attention:

save_steps: 200
warmup_steps: 20
eval_steps: 200
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:

tiny-ko-124m-sft

This model is a fine-tuned version of minpeter/tiny-ko-124m-base on the lemon-mint/Korean-FineTome-100k, the lemon-mint/smol-koreantalk, the heegyu/open-korean-instructions-v20231020, the trillionlabs/multisystem-curated, the allenai/tulu-3-sft-personas-instruction-following, the coastral/korean-writing-style-instruct, the devngho/korean-instruction-mix, the youjunhyeok/Magpie-Pro-300K-Filtered-ko and the youjunhyeok/smoltalk-ko-translate datasets. It achieves the following results on the evaluation set:

  • Loss: 1.7098

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 512
  • total_eval_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • training_steps: 5042

Training results

Training Loss Epoch Step Validation Loss
No log 0 0 2.7016
2.1419 0.0397 200 2.1320
2.0675 0.0793 400 2.0446
2.0252 0.1190 600 1.9864
1.9304 0.1587 800 1.9468
1.9536 0.1983 1000 1.9145
1.8692 0.2380 1200 1.8879
1.8556 0.2777 1400 1.8645
1.8421 0.3174 1600 1.8433
1.9118 0.3570 1800 1.8256
1.7791 0.3967 2000 1.8090
1.8162 0.4364 2200 1.7934
1.796 0.4760 2400 1.7795
1.749 0.5157 2600 1.7661
1.7536 0.5554 2800 1.7540
1.7672 0.5950 3000 1.7432
1.7523 0.6347 3200 1.7336
1.7074 0.6744 3400 1.7259
1.7218 0.7141 3600 1.7202
1.6928 0.7537 3800 1.7158
1.7184 0.7934 4000 1.7127
1.761 0.8331 4200 1.7109
1.7481 0.8727 4400 1.7101
1.7245 0.9124 4600 1.7098
1.7076 0.9521 4800 1.7097
1.7403 0.9917 5000 1.7098

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
166
Safetensors
Model size
124M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for minpeter/tiny-ko-124m-sft

Finetuned
(1)
this model

Datasets used to train minpeter/tiny-ko-124m-sft