miosipof's picture
End of training
6eda9ab verified
metadata
library_name: transformers
license: apache-2.0
base_model: miosipof/whisper-small-ft-balbus-sep28k-multiclass_v3a
tags:
  - generated_from_trainer
datasets:
  - balbus-classifier
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: >-
      whisper-small-ft-balbus-sep28k-multiclass_v3a-ft-balbus-sep28k-multiclass_v4_IT
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: Apple dataset
          type: balbus-classifier
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.85924617196702
          - name: Precision
            type: precision
            value: 0.8795132394309227
          - name: Recall
            type: recall
            value: 0.8594066773532715
          - name: F1
            type: f1
            value: 0.8603528122668381

whisper-small-ft-balbus-sep28k-multiclass_v3a-ft-balbus-sep28k-multiclass_v4_IT

This model is a fine-tuned version of miosipof/whisper-small-ft-balbus-sep28k-multiclass_v3a on the Apple dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2301
  • Accuracy: 0.8592
  • Precision: 0.8795
  • Recall: 0.8594
  • F1: 0.8604
  • Roc-auc: None

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.5
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Roc-auc
0.6519 0.4188 100 0.6127 0.4741 0.5574 0.4759 0.4098 None
0.4774 0.8377 200 0.4080 0.7468 0.7651 0.7470 0.7497 None
0.2425 1.2565 300 0.2518 0.8439 0.8566 0.8443 0.8445 None
0.2275 1.6754 400 0.2301 0.8592 0.8795 0.8594 0.8604 None

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.2.0
  • Datasets 3.6.0
  • Tokenizers 0.20.3