metadata
library_name: transformers
license: apache-2.0
base_model: miosipof/whisper-small-ft-balbus-sep28k-multiclass_v3a
tags:
- generated_from_trainer
datasets:
- balbus-classifier
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: >-
whisper-small-ft-balbus-sep28k-multiclass_v3a-ft-balbus-sep28k-multiclass_v4_IT
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: Apple dataset
type: balbus-classifier
metrics:
- name: Accuracy
type: accuracy
value: 0.85924617196702
- name: Precision
type: precision
value: 0.8795132394309227
- name: Recall
type: recall
value: 0.8594066773532715
- name: F1
type: f1
value: 0.8603528122668381
whisper-small-ft-balbus-sep28k-multiclass_v3a-ft-balbus-sep28k-multiclass_v4_IT
This model is a fine-tuned version of miosipof/whisper-small-ft-balbus-sep28k-multiclass_v3a on the Apple dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.2301
- Accuracy: 0.8592
- Precision: 0.8795
- Recall: 0.8594
- F1: 0.8604
- Roc-auc: None
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc-auc |
---|---|---|---|---|---|---|---|---|
0.6519 | 0.4188 | 100 | 0.6127 | 0.4741 | 0.5574 | 0.4759 | 0.4098 | None |
0.4774 | 0.8377 | 200 | 0.4080 | 0.7468 | 0.7651 | 0.7470 | 0.7497 | None |
0.2425 | 1.2565 | 300 | 0.2518 | 0.8439 | 0.8566 | 0.8443 | 0.8445 | None |
0.2275 | 1.6754 | 400 | 0.2301 | 0.8592 | 0.8795 | 0.8594 | 0.8604 | None |
Framework versions
- Transformers 4.45.2
- Pytorch 2.2.0
- Datasets 3.6.0
- Tokenizers 0.20.3