t5-base-finetuned-insightSumm

This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3468
  • Rouge1: 89.0966
  • Rouge2: 86.6051
  • Rougel: 88.8728
  • Rougelsum: 88.889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
0.2422 1.0 3168 0.3808 88.8773 86.4338 88.6606 88.6678
0.2168 2.0 6336 0.3629 88.901 86.4648 88.69 88.7004
0.6073 3.0 9504 0.3476 89.0149 86.5261 88.7853 88.8021
0.3439 4.0 12672 0.3468 89.0966 86.6051 88.8728 88.889
0.4147 5.0 15840 0.3453 89.0389 86.5558 88.8189 88.8349

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.7.0+cu126
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
7
Safetensors
Model size
223M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for mishikaa16/t5-base-finetuned-insightSumm

Base model

google-t5/t5-base
Finetuned
(574)
this model