videomae-base-finetuned-xd-violence-binary
This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6208
- Accuracy: 0.6674
- F1: 0.7483
- Precision: 0.7108
- Recall: 0.7900
- Specificity: 0.4625
- True Positives: 17801
- True Negatives: 6233
- False Positives: 7244
- False Negatives: 4733
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1684
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Specificity | True Positives | True Negatives | False Positives | False Negatives |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6787 | 0.2506 | 422 | 0.7039 | 0.5679 | 0.5938 | 0.7211 | 0.5047 | 0.6736 | 11374 | 9078 | 4399 | 11160 |
0.6389 | 1.2506 | 844 | 0.6784 | 0.5828 | 0.5991 | 0.7513 | 0.4981 | 0.7243 | 11225 | 9761 | 3716 | 11309 |
0.6126 | 2.2506 | 1266 | 0.6322 | 0.6599 | 0.7373 | 0.7135 | 0.7626 | 0.4881 | 17185 | 6578 | 6899 | 5349 |
0.6762 | 3.2482 | 1684 | 0.6208 | 0.6674 | 0.7483 | 0.7108 | 0.7900 | 0.4625 | 17801 | 6233 | 7244 | 4733 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.1.0+cu118
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for mitegvg/videomae-base-finetuned-xd-violence-binary
Base model
MCG-NJU/videomae-base