End of training
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: cc-by-nc-4.0
|
4 |
+
base_model: MCG-NJU/videomae-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
model-index:
|
13 |
+
- name: videomae-base-finetuned-xd-violence-binary
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# videomae-base-finetuned-xd-violence-binary
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.6208
|
25 |
+
- Accuracy: 0.6674
|
26 |
+
- F1: 0.7483
|
27 |
+
- Precision: 0.7108
|
28 |
+
- Recall: 0.7900
|
29 |
+
- Specificity: 0.4625
|
30 |
+
- True Positives: 17801
|
31 |
+
- True Negatives: 6233
|
32 |
+
- False Positives: 7244
|
33 |
+
- False Negatives: 4733
|
34 |
+
|
35 |
+
## Model description
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Intended uses & limitations
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training and evaluation data
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
|
49 |
+
### Training hyperparameters
|
50 |
+
|
51 |
+
The following hyperparameters were used during training:
|
52 |
+
- learning_rate: 0.0005
|
53 |
+
- train_batch_size: 8
|
54 |
+
- eval_batch_size: 8
|
55 |
+
- seed: 42
|
56 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
57 |
+
- lr_scheduler_type: linear
|
58 |
+
- lr_scheduler_warmup_ratio: 0.1
|
59 |
+
- training_steps: 1684
|
60 |
+
|
61 |
+
### Training results
|
62 |
+
|
63 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Specificity | True Positives | True Negatives | False Positives | False Negatives |
|
64 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-----------:|:--------------:|:--------------:|:---------------:|:---------------:|
|
65 |
+
| 0.6787 | 0.2506 | 422 | 0.7039 | 0.5679 | 0.5938 | 0.7211 | 0.5047 | 0.6736 | 11374 | 9078 | 4399 | 11160 |
|
66 |
+
| 0.6389 | 1.2506 | 844 | 0.6784 | 0.5828 | 0.5991 | 0.7513 | 0.4981 | 0.7243 | 11225 | 9761 | 3716 | 11309 |
|
67 |
+
| 0.6126 | 2.2506 | 1266 | 0.6322 | 0.6599 | 0.7373 | 0.7135 | 0.7626 | 0.4881 | 17185 | 6578 | 6899 | 5349 |
|
68 |
+
| 0.6762 | 3.2482 | 1684 | 0.6208 | 0.6674 | 0.7483 | 0.7108 | 0.7900 | 0.4625 | 17801 | 6233 | 7244 | 4733 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.51.3
|
74 |
+
- Pytorch 2.1.0+cu118
|
75 |
+
- Datasets 3.6.0
|
76 |
+
- Tokenizers 0.21.1
|