mitegvg commited on
Commit
17d42f5
·
verified ·
1 Parent(s): f9806f3

End of training

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-nc-4.0
4
+ base_model: MCG-NJU/videomae-base
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ - precision
11
+ - recall
12
+ model-index:
13
+ - name: videomae-base-finetuned-xd-violence-binary
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # videomae-base-finetuned-xd-violence-binary
21
+
22
+ This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.6208
25
+ - Accuracy: 0.6674
26
+ - F1: 0.7483
27
+ - Precision: 0.7108
28
+ - Recall: 0.7900
29
+ - Specificity: 0.4625
30
+ - True Positives: 17801
31
+ - True Negatives: 6233
32
+ - False Positives: 7244
33
+ - False Negatives: 4733
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 0.0005
53
+ - train_batch_size: 8
54
+ - eval_batch_size: 8
55
+ - seed: 42
56
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
57
+ - lr_scheduler_type: linear
58
+ - lr_scheduler_warmup_ratio: 0.1
59
+ - training_steps: 1684
60
+
61
+ ### Training results
62
+
63
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Specificity | True Positives | True Negatives | False Positives | False Negatives |
64
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-----------:|:--------------:|:--------------:|:---------------:|:---------------:|
65
+ | 0.6787 | 0.2506 | 422 | 0.7039 | 0.5679 | 0.5938 | 0.7211 | 0.5047 | 0.6736 | 11374 | 9078 | 4399 | 11160 |
66
+ | 0.6389 | 1.2506 | 844 | 0.6784 | 0.5828 | 0.5991 | 0.7513 | 0.4981 | 0.7243 | 11225 | 9761 | 3716 | 11309 |
67
+ | 0.6126 | 2.2506 | 1266 | 0.6322 | 0.6599 | 0.7373 | 0.7135 | 0.7626 | 0.4881 | 17185 | 6578 | 6899 | 5349 |
68
+ | 0.6762 | 3.2482 | 1684 | 0.6208 | 0.6674 | 0.7483 | 0.7108 | 0.7900 | 0.4625 | 17801 | 6233 | 7244 | 4733 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.51.3
74
+ - Pytorch 2.1.0+cu118
75
+ - Datasets 3.6.0
76
+ - Tokenizers 0.21.1