videomae-base-kinetics-binary-finetuned-xd-violence
This model is a fine-tuned version of MCG-NJU/videomae-base-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6193
- Accuracy: 0.6697
- F1: 0.5244
- Precision: 0.5685
- Recall: 0.4867
- Specificity: 0.7791
- True Positives: 6559
- True Negatives: 17556
- False Positives: 4978
- False Negatives: 6918
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1684
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Specificity | True Positives | True Negatives | False Positives | False Negatives |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.7027 | 0.2506 | 422 | 0.6753 | 0.6153 | 0.4978 | 0.4867 | 0.5094 | 0.6787 | 6865 | 15293 | 7241 | 6612 |
0.57 | 1.2506 | 844 | 0.6846 | 0.6354 | 0.5330 | 0.5118 | 0.5561 | 0.6828 | 7494 | 15386 | 7148 | 5983 |
0.6373 | 2.2506 | 1266 | 0.6396 | 0.6502 | 0.5753 | 0.5273 | 0.6329 | 0.6606 | 8529 | 14887 | 7647 | 4948 |
0.5108 | 3.2482 | 1684 | 0.6193 | 0.6697 | 0.5244 | 0.5685 | 0.4867 | 0.7791 | 6559 | 17556 | 4978 | 6918 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.1.0+cu118
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for mitegvg/videomae-base-kinetics-binary-finetuned-xd-violence
Base model
MCG-NJU/videomae-base-finetuned-kinetics