videomae-base-kinetics-binary-finetuned-xd-violence

This model is a fine-tuned version of MCG-NJU/videomae-base-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6193
  • Accuracy: 0.6697
  • F1: 0.5244
  • Precision: 0.5685
  • Recall: 0.4867
  • Specificity: 0.7791
  • True Positives: 6559
  • True Negatives: 17556
  • False Positives: 4978
  • False Negatives: 6918

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 1684

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Specificity True Positives True Negatives False Positives False Negatives
0.7027 0.2506 422 0.6753 0.6153 0.4978 0.4867 0.5094 0.6787 6865 15293 7241 6612
0.57 1.2506 844 0.6846 0.6354 0.5330 0.5118 0.5561 0.6828 7494 15386 7148 5983
0.6373 2.2506 1266 0.6396 0.6502 0.5753 0.5273 0.6329 0.6606 8529 14887 7647 4948
0.5108 3.2482 1684 0.6193 0.6697 0.5244 0.5685 0.4867 0.7791 6559 17556 4978 6918

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.1.0+cu118
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
86.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for mitegvg/videomae-base-kinetics-binary-finetuned-xd-violence

Finetuned
(222)
this model