videomae-small-finetuned-kinetics-finetuned-sports-videos-in-the-wild

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8809
  • Accuracy: 0.4885
  • Macro Precision: 0.4193
  • Macro Recall: 0.4615
  • Macro F1: 0.4211
  • Weighted Precision: 0.5286
  • Weighted Recall: 0.4885
  • Weighted F1: 0.4912

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 8400

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro Precision Macro Recall Macro F1 Weighted Precision Weighted Recall Weighted F1
2.9749 0.0501 421 2.8242 0.2173 0.1185 0.1514 0.1106 0.2292 0.2173 0.2043
2.6206 1.0501 842 2.9475 0.1903 0.1594 0.1931 0.1184 0.2354 0.1903 0.1529
2.613 2.0501 1263 2.4696 0.2887 0.2318 0.2691 0.2027 0.3583 0.2887 0.2657
2.6323 3.0501 1684 2.4388 0.3343 0.2885 0.2806 0.2276 0.3987 0.3343 0.3145
2.5162 4.0501 2105 2.3297 0.3595 0.2928 0.3087 0.2545 0.4058 0.3595 0.3391
2.2705 5.0501 2526 2.2225 0.3595 0.3278 0.3469 0.2809 0.4444 0.3595 0.3428
1.9641 6.0501 2947 2.3600 0.3365 0.3708 0.3335 0.2857 0.4769 0.3365 0.3327
2.0005 7.0501 3368 2.2221 0.3828 0.3515 0.3602 0.3079 0.4536 0.3828 0.3791
1.9682 8.0501 3789 2.1732 0.3784 0.3590 0.3550 0.3065 0.4540 0.3784 0.3731
1.8685 9.0501 4210 2.0484 0.4273 0.3963 0.4070 0.3686 0.5218 0.4273 0.4289
1.8785 10.0501 4631 2.1011 0.4196 0.3903 0.3817 0.3435 0.4751 0.4196 0.4110
1.5658 11.0501 5052 2.0113 0.4386 0.3928 0.3924 0.3597 0.4963 0.4386 0.4375
1.7904 12.0501 5473 2.0118 0.4404 0.3921 0.4118 0.3725 0.4953 0.4404 0.4390
1.5856 13.0501 5894 1.9331 0.4604 0.4076 0.4213 0.3922 0.5053 0.4604 0.4600
1.7294 14.0501 6315 1.9973 0.4444 0.3914 0.4208 0.3812 0.5031 0.4444 0.4490
1.3241 15.0501 6736 1.9553 0.4612 0.4010 0.4344 0.3879 0.5226 0.4612 0.4616
1.3435 16.0501 7157 1.9768 0.4645 0.4060 0.4474 0.3969 0.5299 0.4645 0.4625
1.2306 17.0501 7578 1.9022 0.4728 0.4078 0.4367 0.4016 0.5212 0.4728 0.4723
1.2575 18.0501 7999 1.8809 0.4816 0.4117 0.4529 0.4118 0.5295 0.4816 0.4841
1.3788 19.0477 8400 1.8809 0.4885 0.4193 0.4615 0.4211 0.5286 0.4885 0.4912

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.1.0+cu118
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
35
Safetensors
Model size
26M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support