videomae-small-finetuned-kinetics-finetuned-sports-videos-in-the-wild
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.8809
- Accuracy: 0.4885
- Macro Precision: 0.4193
- Macro Recall: 0.4615
- Macro F1: 0.4211
- Weighted Precision: 0.5286
- Weighted Recall: 0.4885
- Weighted F1: 0.4912
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 8400
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro Precision | Macro Recall | Macro F1 | Weighted Precision | Weighted Recall | Weighted F1 |
---|---|---|---|---|---|---|---|---|---|---|
2.9749 | 0.0501 | 421 | 2.8242 | 0.2173 | 0.1185 | 0.1514 | 0.1106 | 0.2292 | 0.2173 | 0.2043 |
2.6206 | 1.0501 | 842 | 2.9475 | 0.1903 | 0.1594 | 0.1931 | 0.1184 | 0.2354 | 0.1903 | 0.1529 |
2.613 | 2.0501 | 1263 | 2.4696 | 0.2887 | 0.2318 | 0.2691 | 0.2027 | 0.3583 | 0.2887 | 0.2657 |
2.6323 | 3.0501 | 1684 | 2.4388 | 0.3343 | 0.2885 | 0.2806 | 0.2276 | 0.3987 | 0.3343 | 0.3145 |
2.5162 | 4.0501 | 2105 | 2.3297 | 0.3595 | 0.2928 | 0.3087 | 0.2545 | 0.4058 | 0.3595 | 0.3391 |
2.2705 | 5.0501 | 2526 | 2.2225 | 0.3595 | 0.3278 | 0.3469 | 0.2809 | 0.4444 | 0.3595 | 0.3428 |
1.9641 | 6.0501 | 2947 | 2.3600 | 0.3365 | 0.3708 | 0.3335 | 0.2857 | 0.4769 | 0.3365 | 0.3327 |
2.0005 | 7.0501 | 3368 | 2.2221 | 0.3828 | 0.3515 | 0.3602 | 0.3079 | 0.4536 | 0.3828 | 0.3791 |
1.9682 | 8.0501 | 3789 | 2.1732 | 0.3784 | 0.3590 | 0.3550 | 0.3065 | 0.4540 | 0.3784 | 0.3731 |
1.8685 | 9.0501 | 4210 | 2.0484 | 0.4273 | 0.3963 | 0.4070 | 0.3686 | 0.5218 | 0.4273 | 0.4289 |
1.8785 | 10.0501 | 4631 | 2.1011 | 0.4196 | 0.3903 | 0.3817 | 0.3435 | 0.4751 | 0.4196 | 0.4110 |
1.5658 | 11.0501 | 5052 | 2.0113 | 0.4386 | 0.3928 | 0.3924 | 0.3597 | 0.4963 | 0.4386 | 0.4375 |
1.7904 | 12.0501 | 5473 | 2.0118 | 0.4404 | 0.3921 | 0.4118 | 0.3725 | 0.4953 | 0.4404 | 0.4390 |
1.5856 | 13.0501 | 5894 | 1.9331 | 0.4604 | 0.4076 | 0.4213 | 0.3922 | 0.5053 | 0.4604 | 0.4600 |
1.7294 | 14.0501 | 6315 | 1.9973 | 0.4444 | 0.3914 | 0.4208 | 0.3812 | 0.5031 | 0.4444 | 0.4490 |
1.3241 | 15.0501 | 6736 | 1.9553 | 0.4612 | 0.4010 | 0.4344 | 0.3879 | 0.5226 | 0.4612 | 0.4616 |
1.3435 | 16.0501 | 7157 | 1.9768 | 0.4645 | 0.4060 | 0.4474 | 0.3969 | 0.5299 | 0.4645 | 0.4625 |
1.2306 | 17.0501 | 7578 | 1.9022 | 0.4728 | 0.4078 | 0.4367 | 0.4016 | 0.5212 | 0.4728 | 0.4723 |
1.2575 | 18.0501 | 7999 | 1.8809 | 0.4816 | 0.4117 | 0.4529 | 0.4118 | 0.5295 | 0.4816 | 0.4841 |
1.3788 | 19.0477 | 8400 | 1.8809 | 0.4885 | 0.4193 | 0.4615 | 0.4211 | 0.5286 | 0.4885 | 0.4912 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.1.0+cu118
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 35
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support