mitegvg's picture
End of training
73a728e verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: videomae-tiny-binary-finetuned-xd-violence
    results: []

videomae-tiny-binary-finetuned-xd-violence

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6057
  • Accuracy: 0.6815
  • F1: 0.5197
  • Precision: 0.5965
  • Recall: 0.4604
  • Specificity: 0.8137
  • True Positives: 6205
  • True Negatives: 18337
  • False Positives: 4197
  • False Negatives: 7272

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 1684

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Specificity True Positives True Negatives False Positives False Negatives
0.698 0.2506 422 0.6440 0.6324 0.3758 0.5154 0.2957 0.8337 3985 18787 3747 9492
0.6132 1.2506 844 0.6481 0.6394 0.5759 0.5144 0.6540 0.6307 8814 14213 8321 4663
0.6364 2.2506 1266 0.6168 0.6617 0.5356 0.5508 0.5212 0.7458 7024 16805 5729 6453
0.5219 3.2482 1684 0.6057 0.6815 0.5197 0.5965 0.4604 0.8137 6205 18337 4197 7272

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.1.0+cu118
  • Datasets 3.6.0
  • Tokenizers 0.21.1