|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- mllmTeam/DroidCall |
|
language: |
|
- en |
|
library_name: transformers |
|
base_model: |
|
- mllmTeam/PhoneLM-1.5B-Instruct |
|
--- |
|
|
|
PhoneLM-1.5B-Call is a 1.5 billion parameter decoder-only language model, fined-turned from PhoneLM-1.5B-Instruct, used for Android intent calling. |
|
|
|
## Usage |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_name = 'mllmTeam/PhoneLM-1.5B-Call' |
|
system_prompt = "You are an expert in composing functions." |
|
|
|
user_message = """ |
|
Here is a list of functions: |
|
|
|
Name: |
|
web_search |
|
Description: |
|
Initiates a web search using the specified query. |
|
|
|
This function starts a web search using the default search engine. |
|
It opens the search results in the default web browser or appropriate search application. |
|
Args: |
|
query (str): The search string or keywords to be used for the web search. |
|
engine (str): The search engine to use. Default is "baidu". |
|
Possible values are: "baidu", "google" |
|
Returns: |
|
None |
|
Example: |
|
# Perform a simple web search |
|
web_search("Python programming tutorials") |
|
|
|
# Search for a phrase |
|
web_search('"to be or not to be"') |
|
|
|
# Search using a specific search engine |
|
web_search("Python programming tutorials", "google") |
|
|
|
|
|
Now my query is: Help me search the president of United State |
|
""" |
|
|
|
prompt = [ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": user_message} |
|
] |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='cuda', trust_remote_code=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True) |
|
|
|
inp = tokenizer(input_text, return_tensors="pt") |
|
inp = {k: v.to('cuda') for k, v in inp.items()} |
|
out = model.generate(**inp, |
|
max_length=1000, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.7 |
|
) |
|
text = tokenizer.decode(out[0], skip_special_tokens=True) |
|
print(text) |
|
``` |
|
## Model Details |
|
|
|
* **Developed by**: mllmTeam |
|
* **Model type**: `PhoneLM 1.5B` models are auto-regressive language models based on the transformer decoder architecture. |
|
* **Language(s)**: English |
|
* **Paper**: [PhoneLM Technical Report]() |
|
* **Library**: [PhoneLM](https://github.com/UbiquitousLearning/PhoneLM) |
|
|
|
### Model Architecture |
|
|
|
The model is a decoder-only transformer architecture with the following modifications: |
|
|
|
| Hidden Size | Layers | Heads | Sequence Length | |
|
|-------------|--------|-------|-----------------| |
|
| 2560 | 19 | 16 | 2048 | |
|
|
|
* **Position Embeddings**: Rotary Position Embeddings ([Su et al., 2021](https://arxiv.org/abs/2104.09864)) applied to the first 25% of head embedding dimensions for improved throughput following [Black et al. (2022)](https://arxiv.org/pdf/2204.06745.pdf). PhoneLM quantized the sin and cos values in Rotary Position Embeddings to 8-bit integers. |
|
* **Normalization**: LayerNorm ([Ba et al., 2016](https://arxiv.org/abs/1607.06450)) with learned bias terms as opposed to RMSNorm ([Zhang & Sennrich, 2019](https://arxiv.org/abs/1910.07467)). |
|
* **Biases**: We remove all bias terms from the feed-forward networks and multi-head self-attention layers, except for the biases of the query, key, and value projections ([Bai et al., 2023](https://arxiv.org/abs/2309.16609)). |
|
* **ReLU Activation Function**: ReLU([Glorot et al., 2011](https://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf)) activation functions are adopted in feed-forward networks. |
|
* **Tokenizer**: We use the SmolLM([Allal et al., 2024](https://huggingface.co/blog/smollm))'s tokenizer with a vocabulary size of 49,152. |
|
|
|
## License |
|
* This repository is released under the [Apache-2.0](https://huggingface.co/mllmTeam/PhoneLM-1.5B-Call/blob/main/LICENSE) License. |
|
|
|
## Citation |
|
``` |
|
@misc{yi2024phonelmanefficientcapablesmall, |
|
title={PhoneLM:an Efficient and Capable Small Language Model Family through Principled Pre-training}, |
|
author={Rongjie Yi and Xiang Li and Weikai Xie and Zhenyan Lu and Chenghua Wang and Ao Zhou and Shangguang Wang and Xiwen Zhang and Mengwei Xu}, |
|
year={2024}, |
|
eprint={2411.05046}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2411.05046}, |
|
} |
|
``` |