datasets: | |
- instruction-pretrain/medicine-instruction-augmented-corpora | |
- Open-Orca/OpenOrca | |
- EleutherAI/pile | |
- GAIR/lima | |
- WizardLM/WizardLM_evol_instruct_V2_196k | |
language: | |
- en | |
license: llama3 | |
tags: | |
- biology | |
- medical | |
- mlx | |
library_name: mlx | |
pipeline_tag: text-generation | |
base_model: instruction-pretrain/medicine-Llama3-8B | |
# mlx-community/Llama3-8B-Medicine-4bit | |
This model [mlx-community/Llama3-8B-Medicine-4bit](https://huggingface.co/mlx-community/Llama3-8B-Medicine-4bit) was | |
converted to MLX format from [instruction-pretrain/medicine-Llama3-8B](https://huggingface.co/instruction-pretrain/medicine-Llama3-8B) | |
using mlx-lm version **0.25.2**. | |
## Use with mlx | |
```bash | |
pip install mlx-lm | |
``` | |
```python | |
from mlx_lm import load, generate | |
model, tokenizer = load("mlx-community/Llama3-8B-Medicine-4bit") | |
prompt = "hello" | |
if tokenizer.chat_template is not None: | |
messages = [{"role": "user", "content": prompt}] | |
prompt = tokenizer.apply_chat_template( | |
messages, add_generation_prompt=True | |
) | |
response = generate(model, tokenizer, prompt=prompt, verbose=True) | |
``` | |