|
--- |
|
license: gemma |
|
library_name: mlx |
|
pipeline_tag: text-generation |
|
extra_gated_heading: Access Gemma on Hugging Face |
|
extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and |
|
agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging |
|
Face and click below. Requests are processed immediately. |
|
extra_gated_button_content: Acknowledge license |
|
base_model: google/gemma-3-1b-it |
|
tags: |
|
- mlx |
|
model-index: |
|
- name: gemma-3-1b-it-DQ |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: PIQA |
|
name: PIQA |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 0.75 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: winogrande |
|
name: winogrande |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 0.60 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: boolq |
|
name: boolq |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 0.73 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: arc-c |
|
name: arc-c |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 0.35 |
|
verified: false |
|
--- |
|
|
|
# mlx-community/gemma-3-1b-it-DQ |
|
|
|
This model [mlx-community/gemma-3-1b-it-DQ](https://huggingface.co/mlx-community/gemma-3-1b-it-DQ) was |
|
converted to MLX format from [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it) |
|
using mlx-lm version **0.25.2**. |
|
|
|
##### 2x faster and 2.4x less memory footprint than the dequantized model |
|
|
|
## Use with mlx |
|
|
|
```bash |
|
pip install mlx-lm |
|
``` |
|
|
|
```python |
|
from mlx_lm import load, generate |
|
|
|
model, tokenizer = load("mlx-community/gemma-3-1b-it-DQ") |
|
|
|
prompt = "hello" |
|
|
|
if tokenizer.chat_template is not None: |
|
messages = [{"role": "user", "content": prompt}] |
|
prompt = tokenizer.apply_chat_template( |
|
messages, add_generation_prompt=True |
|
) |
|
|
|
response = generate(model, tokenizer, prompt=prompt, verbose=True) |
|
``` |
|
|