This is a version of the DeepSeek-R1-Distill-Qwen-7B model re-distilled for better performance.

Performance

Models DeepSeek-R1-Distill-Qwen-7B DeepSeek-R1-ReDistill-Qwen-7B-v1.1
ARC (25-shot) 55.03 52.3
HellaSwag (10-shot) 61.9 62.36
MMLU (5-shot) 56.75 59.53
TruthfulQA-MC2 45.76 47.7
Winogrande (5-shot) 60.38 61.8
GSM8K (5-shot) 78.85 83.4
Average 59.78 61.18
Models DeepSeek-R1-Distill-Qwen-7B DeepSeek-R1-ReDistill-Qwen-7B-v1.1
GPQA (0-shot) 30.9 34.99
MMLU PRO (5-shot) 28.83 31.02
MUSR (0-shot) 38.85 44.42
BBH (3-shot) 43.54 51.53
IfEval (0-shot) - strict 42.33 35.49
IfEval (0-shot) - loose 30.31 38.49

Usage

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
compute_dtype = torch.bfloat16
device   = 'cuda'
model_id = "mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-7B-v1.1"

model     = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=compute_dtype, attn_implementation="sdpa", device_map=device)
tokenizer = AutoTokenizer.from_pretrained(model_id)

prompt  = "What is 1.5+102.2?"
chat    = tokenizer.apply_chat_template([{"role":"user", "content":prompt}], tokenize=True, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(chat.to(device), max_new_tokens=1024, do_sample=True) 
print(tokenizer.decode(outputs[0]))

Output:

<|begin▁of▁sentence|><|User|>What is 1.5+102.2?<|Assistant|><think>
First, I need to add the whole number parts of the two numbers. The whole numbers are 1 and 102, which add up to 103.

Next, I add the decimal parts of the two numbers. The decimal parts are 0.5 and 0.2, which add up to 0.7.

Finally, I combine the whole number and decimal parts to get the total sum. Adding 103 and 0.7 gives me 103.7.
</think>

To add the numbers \(1.5\) and \(102.2\), follow these steps:

1. **Add the whole number parts:**
   \[
   1 + 102 = 103
   \]

2. **Add the decimal parts:**
   \[
   0.5 + 0.2 = 0.7
   \]

3. **Combine the results:**
   \[
   103 + 0.7 = 103.7
   \]

**Final Answer:**
\[
\boxed{103.7}
\]<|end▁of▁sentence|>

HQQ

Run ~3.5x faster with HQQ. First, install the dependencies:

pip install hqq
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.models.hf.base import AutoHQQHFModel
from hqq.core.quantize import *

#Params
device        = 'cuda:0'
backend       = "torchao_int4" 
compute_dtype = torch.bfloat16 if backend=="torchao_int4" else torch.float16
model_id      = "mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-7B-v1.1"

#Load
tokenizer = AutoTokenizer.from_pretrained(model_id)
model     = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=compute_dtype, attn_implementation="sdpa")

#Quantize
quant_config = BaseQuantizeConfig(nbits=4, group_size=64, axis=1)
AutoHQQHFModel.quantize_model(model, quant_config=quant_config, compute_dtype=compute_dtype, device=device)

#Optimize
from hqq.utils.patching import prepare_for_inference
prepare_for_inference(model, backend=backend, verbose=False)

############################################################
#Generate (streaming)
from hqq.utils.generation_hf import HFGenerator
gen = HFGenerator(model, tokenizer, max_new_tokens=4096, do_sample=True, compile='partial').warmup()

prompt = "If A equals B, and C equals B - A, what would be the value of C?" 
out    = gen.generate(prompt, print_tokens=True)

############################################################
# #Generate (simple)
# from hqq.utils.generation_hf import patch_model_for_compiled_runtime
# patch_model_for_compiled_runtime(model, tokenizer, warmup=True)

# prompt = "If A equals B, and C equals B - A, what would be the value of C?" 
# chat    = tokenizer.apply_chat_template([{"role":"user", "content":prompt}], tokenize=True, add_generation_prompt=True, return_tensors="pt")
# outputs = model.generate(chat.to(device), max_new_tokens=8192, do_sample=True) 
# print(tokenizer.decode(outputs[0]))
Downloads last month
51
Safetensors
Model size
7.62B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-7B-v1.1

Finetuned
(13)
this model

Collection including mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-7B-v1.1