File size: 2,831 Bytes
3fb1480
1fdb4d1
 
 
 
3fb1480
053fbba
1fdb4d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: mit
train: false
inference: false
pipeline_tag: text-generation
---
This is a version of the <a href="https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B">DeepSeek-R1-Distill-Qwen-7B</a> model re-distilled for better performance.

## Performance

| Models            | <a href="https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B">DeepSeek-R1-Distill-Qwen-7B</a> | <a href="https://huggingface.co/mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-7B-v1.1">DeepSeek-R1-ReDistill-Qwen-7B-v1.1</a> | 
|:-------------------:|:--------:|:----------------:|
| ARC (25-shot)      | <b>55.03</b> | 52.3 | 
| HellaSwag (10-shot)| 61.9  | <b>62.36</b> |
| MMLU (5-shot)      | 56.75 | <b>59.53</b> | 
| TruthfulQA-MC2     | 45.76 | <b>47.7</b> | 
| Winogrande (5-shot)| 60.38 | <b>61.8</b> | 
| GSM8K (5-shot)     | 78.85 | <b>83.4</b> | 
| Average            | 59.78 | <b>61.18</b> | 

| Models            | <a href="https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B">DeepSeek-R1-Distill-Qwen-7B</a> | <a href="https://huggingface.co/mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-7B-v1.1">DeepSeek-R1-ReDistill-Qwen-7B-v1.1</a>  | 
|:-------------------:|:--------:|:----------------:|
| GPQA (0-shot)     | 30.9  | <b>34.99</b> | 
| MMLU PRO (5-shot) | 28.83 | <b>31.02</b> | 
| MUSR (0-shot)     | 38.85 | <b>44.42</b> | 
| BBH (3-shot)      | 43.54 | <b>51.53</b> | 
| IfEval (0-shot) - strict  | <b>42.33</b> | 35.49 | 
| IfEval (0-shot) - loose   | 30.31 | <b>38.49</b> | 

## Usage
```Python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
compute_dtype = torch.bfloat16
device   = 'cuda'
model_id = "mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-7B-v1.1"

model     = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=compute_dtype, attn_implementation="sdpa", device_map=device)
tokenizer = AutoTokenizer.from_pretrained(model_id)

chat    = tokenizer.apply_chat_template([{"role":"user", "content":"What is 1.5+102.2?"}], tokenize=True, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(chat.to(device), max_new_tokens=1024, do_sample=True) 
print(tokenizer.decode(outputs[0]))
```

Output:
```
<|begin▁of▁sentence|><|User|>What is 1.5+102.2?<|Assistant|><think>
First, I identify the numbers involved in the addition: 1.5 and 102.2.

Next, I add the whole numbers: 1 + 102 equals 103.

Then, I add the decimal parts: 0.5 + 0.2 equals 0.7.

Finally, I combine the results: 103 + 0.7 equals 103.7.
</think>

To solve the addition \(1.5 + 102.2\), follow these steps:

1. **Add the whole numbers:**
   \[
   1 + 102 = 103
   \]

2. **Add the decimal parts:**
   \[
   0.5 + 0.2 = 0.7
   \]

3. **Combine the results:**
   \[
   103 + 0.7 = 103.7
   \]

So, the final answer is \(\boxed{103.7}\).<|end▁of▁sentence|>
```