|
--- |
|
license: mit |
|
train: false |
|
inference: false |
|
pipeline_tag: text-generation |
|
--- |
|
This is an <a href="https://github.com/mobiusml/hqq/">HQQ</a> all 4-bit (group-size=128) quantized <a href="https://huggingface.co/microsoft/Phi-4-mini-instruct">Phi-4-mini-instruct</a> model, via <a href="https://github.com/pytorch/ao/">TorchAO</a> and <a href="https://github.com/mobiusml/gemlite/">GemLite</a> as a backend. |
|
|
|
|
|
## Usage |
|
First, install the dependecies: |
|
``` |
|
pip install torchao; |
|
pip install git+https://github.com/mobiusml/gemlite.git; |
|
``` |
|
|
|
Then you can use the sample code below: |
|
``` Python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, HqqConfig |
|
|
|
model_id = "mobiuslabsgmbh/Phi-4-mini-instruct_gemlite-ao_a16w4_gs_128_pack_32bit" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
device_map='cuda', |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
``` |
|
|
|
Use in <a href="https://github.com/vllm-project/vllm/">vLLM</a>: |
|
```Python |
|
from vllm import LLM |
|
from vllm.sampling_params import SamplingParams |
|
|
|
model_id = "mobiuslabsgmbh/Phi-4-mini-instruct_gemlite-ao_a16w4_gs_128_pack_32bit" |
|
|
|
llm = LLM(model=model_id, max_model_len=4096) |
|
sampling_params = SamplingParams(temperature=0.8, top_p=0.95, max_tokens=1024) |
|
outputs = llm.generate(["What is the capital of Germany?"], sampling_params) |
|
print(outputs[0].outputs[0].text) |
|
``` |