SentenceTransformer based on rasyosef/roberta-amharic-text-embedding-medium
This is a sentence-transformers model finetuned from rasyosef/roberta-amharic-text-embedding-medium. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: rasyosef/roberta-amharic-text-embedding-medium
- Maximum Sequence Length: 510 tokens
- Output Dimensionality: 512 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 510, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("mogesa/Roberta-amharic-news-sentence-transformer")
# Run inference
sentences = [
'የግሉ ወረት እና አፍሪቃ',
'« በፊናንሱ ተቋማዊ ተሀድሶ የተነሳ የአፍሪቃ ህብረት ለቀጣዩ በጀቱ 12 ከመቶ ቁጠባ አድርጓል በዚህ አባል ሀገራት ያበረከቱት አስተዋፅኦ ትልቅ ነው',
'በሱዳን ጉዳይ ጣልቃ በመግባት የነዳጅ የሌሎች የተፈጥሮ ሀብቷን የመቀራመት እድል ሊፈጠር ሰበብ የሚሰጡ ሀገራት መኖራቸው ደግሞ ሁለተኛው ምክንያት ነው',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 217,850 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 6 tokens
- mean: 11.96 tokens
- max: 35 tokens
- min: 8 tokens
- mean: 21.1 tokens
- max: 57 tokens
- min: -0.17
- mean: 0.37
- max: 0.9
- Samples:
sentence_0 sentence_1 label በማእከላዊ ጎንደር ዞን ጠገዴ የታገቱት ስድስት ታዳጊዎች ለምን ተገደሉ
"ቦታው ዘወር ያለ ነበር ኮከራ ቀበሌ የሚባል ድሮም 'የሽፍታ መጠጊያ' ይባላል
0.33186144
የኢትዮ-ምህዳር ጋዜጣ ዋና አዘጋጅ ታሰረ
ዋና አዘጋጁ በወንጀል ህግ በአንቀፅ 613 “ስማ ማጥፋት የሀሰት ሀሜት” በሚል የተቀመጠውን ተላልፏል በሚል የተከሰሰው
0.50249875
አምባሳደር ሺን ፤ ኢትዮጵያና ኤርትራ
አምባሳደሩ ቀደም በአለም አቀፍ ፍርድ ቤት በተደረገ ድርድር ውጤት ባድመ የኤርትራ መሆኗን እትዮጵያውያን መቀበል ይኖርባቸዋል ብለዋል
0.54789203
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0367 | 500 | 1.2372 |
0.0734 | 1000 | 1.0754 |
0.1102 | 1500 | 1.0128 |
0.1469 | 2000 | 0.9841 |
0.1836 | 2500 | 0.944 |
0.2203 | 3000 | 0.9168 |
0.2571 | 3500 | 0.8863 |
0.2938 | 4000 | 0.8685 |
0.3305 | 4500 | 0.8575 |
0.3672 | 5000 | 0.8637 |
0.4039 | 5500 | 0.8353 |
0.4407 | 6000 | 0.8147 |
0.4774 | 6500 | 0.7913 |
0.5141 | 7000 | 0.7751 |
0.5508 | 7500 | 0.7719 |
0.5875 | 8000 | 0.7605 |
0.6243 | 8500 | 0.7206 |
0.6610 | 9000 | 0.7219 |
0.6977 | 9500 | 0.7302 |
0.7344 | 10000 | 0.7307 |
0.7712 | 10500 | 0.7019 |
0.8079 | 11000 | 0.7127 |
0.8446 | 11500 | 0.6693 |
0.8813 | 12000 | 0.6934 |
0.9180 | 12500 | 0.6721 |
0.9548 | 13000 | 0.6657 |
0.9915 | 13500 | 0.6696 |
1.0282 | 14000 | 0.5583 |
1.0649 | 14500 | 0.5335 |
1.1016 | 15000 | 0.5234 |
1.1384 | 15500 | 0.5192 |
1.1751 | 16000 | 0.5317 |
1.2118 | 16500 | 0.5325 |
1.2485 | 17000 | 0.5201 |
1.2853 | 17500 | 0.5096 |
1.3220 | 18000 | 0.5001 |
1.3587 | 18500 | 0.5015 |
1.3954 | 19000 | 0.4862 |
1.4321 | 19500 | 0.4901 |
1.4689 | 20000 | 0.5168 |
1.5056 | 20500 | 0.499 |
1.5423 | 21000 | 0.4937 |
1.5790 | 21500 | 0.4772 |
1.6157 | 22000 | 0.4709 |
1.6525 | 22500 | 0.4971 |
1.6892 | 23000 | 0.485 |
1.7259 | 23500 | 0.4689 |
1.7626 | 24000 | 0.4789 |
1.7994 | 24500 | 0.4606 |
1.8361 | 25000 | 0.4711 |
1.8728 | 25500 | 0.4774 |
1.9095 | 26000 | 0.4649 |
1.9462 | 26500 | 0.4779 |
1.9830 | 27000 | 0.4703 |
2.0197 | 27500 | 0.4202 |
2.0564 | 28000 | 0.389 |
2.0931 | 28500 | 0.3824 |
2.1298 | 29000 | 0.3682 |
2.1666 | 29500 | 0.3764 |
2.2033 | 30000 | 0.366 |
2.2400 | 30500 | 0.3723 |
2.2767 | 31000 | 0.38 |
2.3135 | 31500 | 0.3632 |
2.3502 | 32000 | 0.3817 |
2.3869 | 32500 | 0.3894 |
2.4236 | 33000 | 0.3844 |
2.4603 | 33500 | 0.3761 |
2.4971 | 34000 | 0.3871 |
2.5338 | 34500 | 0.3672 |
2.5705 | 35000 | 0.3621 |
2.6072 | 35500 | 0.3907 |
2.6439 | 36000 | 0.3688 |
2.6807 | 36500 | 0.3653 |
2.7174 | 37000 | 0.3632 |
2.7541 | 37500 | 0.3698 |
2.7908 | 38000 | 0.3696 |
2.8276 | 38500 | 0.3624 |
2.8643 | 39000 | 0.3731 |
2.9010 | 39500 | 0.3634 |
2.9377 | 40000 | 0.3504 |
2.9744 | 40500 | 0.3643 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.5.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for mogesa/Roberta-amharic-news-sentence-transformer
Base model
rasyosef/roberta-medium-amharic