result_model / README.md
mohamed20-AI's picture
mohamed20-AI/model_title
f0d0ef7 verified
metadata
language:
  - en
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:80
  - loss:CoSENTLoss
base_model: abdeljalilELmajjodi/model
widget:
  - source_sentence: >-
      Two adults, one female in white, with shades and one male, gray clothes,
      walking across a street, away from a eatery with a blurred image of a dark
      colored red shirted person in the foreground.
    sentences:
      - Two people ride bicycles into a tunnel.
      - There are people just getting on a train
      - There are children present
  - source_sentence: >-
      A man with blond-hair, and a brown shirt drinking out of a public water
      fountain.
    sentences:
      - Some women are hugging on vacation.
      - The family is sitting down for dinner.
      - >-
        A blond man wearing a brown shirt is reading a book on a bench in the
        park
  - source_sentence: Two women who just had lunch hugging and saying goodbye.
    sentences:
      - There are two woman in this picture.
      - >-
        Two adults run across the street to get away from a red shirted person
        chasing them.
      - The woman is wearing black.
  - source_sentence: A woman in a green jacket and hood over her head looking towards a valley.
    sentences:
      - The woman is wearing green.
      - A woman in white.
      - A man is drinking juice.
  - source_sentence: >-
      An older man sits with his orange juice at a small table in a coffee shop
      while employees in bright colored shirts smile in the background.
    sentences:
      - They are protesting outside the capital.
      - A couple are playing frisbee with a young child at the beach.
      - A boy flips a burger.
datasets:
  - sentence-transformers/all-nli
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
model-index:
  - name: SentenceTransformer based on abdeljalilELmajjodi/model
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: pair score evaluator dev
          type: pair-score-evaluator-dev
        metrics:
          - type: pearson_cosine
            value: -0.12381534704198764
            name: Pearson Cosine
          - type: spearman_cosine
            value: -0.06398099132915955
            name: Spearman Cosine

SentenceTransformer based on abdeljalilELmajjodi/model

This is a sentence-transformers model finetuned from abdeljalilELmajjodi/model on the all-nli dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: abdeljalilELmajjodi/model
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'An older man sits with his orange juice at a small table in a coffee shop while employees in bright colored shirts smile in the background.',
    'A boy flips a burger.',
    'They are protesting outside the capital.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine -0.1238
spearman_cosine -0.064

Training Details

Training Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 80 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 80 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 10 tokens
    • mean: 25.34 tokens
    • max: 52 tokens
    • min: 5 tokens
    • mean: 12.2 tokens
    • max: 29 tokens
    • min: 0.0
    • mean: 0.51
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Two adults, one female in white, with shades and one male, gray clothes, walking across a street, away from a eatery with a blurred image of a dark colored red shirted person in the foreground. Some people board a train. 0.0
    A few people in a restaurant setting, one of them is drinking orange juice. The people are sitting at desks in school. 0.0
    The school is having a special event in order to show the american culture on how other cultures are dealt with in parties. A school hosts a basketball game. 0.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 20 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 20 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 10 tokens
    • mean: 27.3 tokens
    • max: 52 tokens
    • min: 6 tokens
    • mean: 11.1 tokens
    • max: 21 tokens
    • min: 0.0
    • mean: 0.5
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Woman in white in foreground and a man slightly behind walking with a sign for John's Pizza and Gyro in the background. The woman is wearing black. 0.0
    A couple play in the tide with their young son. The family is sitting down for dinner. 0.0
    A couple playing with a little boy on the beach. A couple are playing frisbee with a young child at the beach. 0.5
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • num_train_epochs: 1
  • warmup_ratio: 0.05
  • bf16: True
  • fp16_full_eval: True
  • load_best_model_at_end: True
  • push_to_hub: True
  • gradient_checkpointing: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: True
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: True
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss pair-score-evaluator-dev_spearman_cosine
0.1 1 3.0033 - -
0.5 5 2.987 - -
1.0 10 3.0908 2.6311 -0.064
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}