metadata
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:80
- loss:CoSENTLoss
base_model: abdeljalilELmajjodi/model
widget:
- source_sentence: >-
Two adults, one female in white, with shades and one male, gray clothes,
walking across a street, away from a eatery with a blurred image of a dark
colored red shirted person in the foreground.
sentences:
- Two people ride bicycles into a tunnel.
- There are people just getting on a train
- There are children present
- source_sentence: >-
A man with blond-hair, and a brown shirt drinking out of a public water
fountain.
sentences:
- Some women are hugging on vacation.
- The family is sitting down for dinner.
- >-
A blond man wearing a brown shirt is reading a book on a bench in the
park
- source_sentence: Two women who just had lunch hugging and saying goodbye.
sentences:
- There are two woman in this picture.
- >-
Two adults run across the street to get away from a red shirted person
chasing them.
- The woman is wearing black.
- source_sentence: A woman in a green jacket and hood over her head looking towards a valley.
sentences:
- The woman is wearing green.
- A woman in white.
- A man is drinking juice.
- source_sentence: >-
An older man sits with his orange juice at a small table in a coffee shop
while employees in bright colored shirts smile in the background.
sentences:
- They are protesting outside the capital.
- A couple are playing frisbee with a young child at the beach.
- A boy flips a burger.
datasets:
- sentence-transformers/all-nli
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on abdeljalilELmajjodi/model
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: pair score evaluator dev
type: pair-score-evaluator-dev
metrics:
- type: pearson_cosine
value: -0.12381534704198764
name: Pearson Cosine
- type: spearman_cosine
value: -0.06398099132915955
name: Spearman Cosine
SentenceTransformer based on abdeljalilELmajjodi/model
This is a sentence-transformers model finetuned from abdeljalilELmajjodi/model on the all-nli dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: abdeljalilELmajjodi/model
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'An older man sits with his orange juice at a small table in a coffee shop while employees in bright colored shirts smile in the background.',
'A boy flips a burger.',
'They are protesting outside the capital.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
pair-score-evaluator-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | -0.1238 |
spearman_cosine | -0.064 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 80 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 80 samples:
sentence1 sentence2 score type string string float details - min: 10 tokens
- mean: 25.34 tokens
- max: 52 tokens
- min: 5 tokens
- mean: 12.2 tokens
- max: 29 tokens
- min: 0.0
- mean: 0.51
- max: 1.0
- Samples:
sentence1 sentence2 score Two adults, one female in white, with shades and one male, gray clothes, walking across a street, away from a eatery with a blurred image of a dark colored red shirted person in the foreground.
Some people board a train.
0.0
A few people in a restaurant setting, one of them is drinking orange juice.
The people are sitting at desks in school.
0.0
The school is having a special event in order to show the american culture on how other cultures are dealt with in parties.
A school hosts a basketball game.
0.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 20 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 20 samples:
sentence1 sentence2 score type string string float details - min: 10 tokens
- mean: 27.3 tokens
- max: 52 tokens
- min: 6 tokens
- mean: 11.1 tokens
- max: 21 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence1 sentence2 score Woman in white in foreground and a man slightly behind walking with a sign for John's Pizza and Gyro in the background.
The woman is wearing black.
0.0
A couple play in the tide with their young son.
The family is sitting down for dinner.
0.0
A couple playing with a little boy on the beach.
A couple are playing frisbee with a young child at the beach.
0.5
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsnum_train_epochs
: 1warmup_ratio
: 0.05bf16
: Truefp16_full_eval
: Trueload_best_model_at_end
: Truepush_to_hub
: Truegradient_checkpointing
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Truetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Truegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | pair-score-evaluator-dev_spearman_cosine |
---|---|---|---|---|
0.1 | 1 | 3.0033 | - | - |
0.5 | 5 | 2.987 | - | - |
1.0 | 10 | 3.0908 | 2.6311 | -0.064 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}