Uploaded model
- Developed by: monamonamona
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Sample Use
以下はelyza-tasks-100-TV_0.jsonlの回答のためのコードです。
# 学習したモデルを用いてタスクを実行
from tqdm import tqdm
# 推論するためにモデルのモードを変更
FastLanguageModel.for_inference(model)
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for monamonamona/llm-jp-3-13b-finetune-241124
Base model
llm-jp/llm-jp-3-13b