l3-whisper-small-l2c_v4
This model is a fine-tuned version of openai/whisper-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3168
- Wer: 24.9003
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.4934 | 0.0933 | 1000 | 0.5257 | 40.4572 |
0.3632 | 0.1866 | 2000 | 0.4365 | 34.0404 |
0.3164 | 0.2799 | 3000 | 0.3980 | 30.8892 |
0.2853 | 0.3732 | 4000 | 0.3731 | 29.0710 |
0.2674 | 0.4664 | 5000 | 0.3553 | 27.9257 |
0.2557 | 0.5597 | 6000 | 0.3414 | 26.5430 |
0.2451 | 0.6530 | 7000 | 0.3340 | 25.9229 |
0.2375 | 0.7463 | 8000 | 0.3242 | 25.4436 |
0.2334 | 0.8396 | 9000 | 0.3204 | 25.0639 |
0.2268 | 0.9329 | 10000 | 0.3168 | 24.9003 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.1+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 1
Model tree for mondhs/l3-whisper-small-l2c_v4
Base model
openai/whisper-small