rt_detrv2_finetuned_trashify_box_detector_v1
This model is a fine-tuned version of PekingU/rtdetr_v2_r50vd on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 8.9000
- Map: 0.5134
- Map 50: 0.6917
- Map 75: 0.5749
- Map Small: 0.4
- Map Medium: 0.2845
- Map Large: 0.5538
- Mar 1: 0.5482
- Mar 10: 0.7189
- Mar 100: 0.7663
- Mar Small: 0.4
- Mar Medium: 0.533
- Mar Large: 0.7931
- Map Bin: 0.7876
- Mar 100 Bin: 0.8879
- Map Hand: 0.5723
- Mar 100 Hand: 0.8118
- Map Not Bin: 0.1797
- Mar 100 Not Bin: 0.6857
- Map Not Hand: -1.0
- Mar 100 Not Hand: -1.0
- Map Not Trash: 0.2679
- Mar 100 Not Trash: 0.625
- Map Trash: 0.6726
- Mar 100 Trash: 0.7876
- Map Trash Arm: 0.6
- Mar 100 Trash Arm: 0.8
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Bin | Mar 100 Bin | Map Hand | Mar 100 Hand | Map Not Bin | Mar 100 Not Bin | Map Not Hand | Mar 100 Not Hand | Map Not Trash | Mar 100 Not Trash | Map Trash | Mar 100 Trash | Map Trash Arm | Mar 100 Trash Arm |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
75.2499 | 1.0 | 50 | 17.5113 | 0.2036 | 0.293 | 0.2137 | 0.0 | 0.0349 | 0.2153 | 0.2926 | 0.4248 | 0.508 | 0.0 | 0.1244 | 0.5579 | 0.5792 | 0.8312 | 0.2434 | 0.7696 | 0.0044 | 0.3429 | -1.0 | -1.0 | 0.0107 | 0.4639 | 0.3837 | 0.6407 | 0.0 | 0.0 |
23.852 | 2.0 | 100 | 11.4502 | 0.2711 | 0.3799 | 0.3015 | 0.05 | 0.1059 | 0.2818 | 0.3735 | 0.5918 | 0.6483 | 0.35 | 0.3608 | 0.6945 | 0.6972 | 0.9035 | 0.2595 | 0.8088 | 0.0109 | 0.5643 | -1.0 | -1.0 | 0.031 | 0.5958 | 0.6088 | 0.7504 | 0.0192 | 0.2667 |
18.2873 | 3.0 | 150 | 10.0729 | 0.4112 | 0.5678 | 0.4869 | 0.3655 | 0.2303 | 0.432 | 0.4785 | 0.6951 | 0.7657 | 0.45 | 0.4551 | 0.7968 | 0.7569 | 0.905 | 0.3534 | 0.8343 | 0.0278 | 0.6571 | -1.0 | -1.0 | 0.1497 | 0.6236 | 0.6421 | 0.7743 | 0.5371 | 0.8 |
15.8982 | 4.0 | 200 | 9.4929 | 0.48 | 0.6555 | 0.5578 | 0.4 | 0.2552 | 0.5051 | 0.524 | 0.7099 | 0.7588 | 0.4 | 0.4597 | 0.7931 | 0.753 | 0.8936 | 0.5989 | 0.8353 | 0.1333 | 0.6429 | -1.0 | -1.0 | 0.1993 | 0.6319 | 0.6537 | 0.7823 | 0.542 | 0.7667 |
14.6758 | 5.0 | 250 | 9.4786 | 0.47 | 0.6472 | 0.5411 | 0.4 | 0.2494 | 0.5009 | 0.5346 | 0.6907 | 0.7252 | 0.4 | 0.3784 | 0.7732 | 0.7641 | 0.8766 | 0.5657 | 0.8029 | 0.1636 | 0.5571 | -1.0 | -1.0 | 0.2588 | 0.6083 | 0.6364 | 0.7726 | 0.4312 | 0.7333 |
13.5443 | 6.0 | 300 | 9.2135 | 0.495 | 0.6699 | 0.5594 | 0.35 | 0.347 | 0.5225 | 0.5432 | 0.7086 | 0.7602 | 0.35 | 0.5625 | 0.7905 | 0.7808 | 0.895 | 0.5788 | 0.8157 | 0.1336 | 0.6286 | -1.0 | -1.0 | 0.2336 | 0.6208 | 0.6626 | 0.8009 | 0.5804 | 0.8 |
12.828 | 7.0 | 350 | 8.9653 | 0.5041 | 0.6851 | 0.5799 | 0.35 | 0.2242 | 0.5328 | 0.543 | 0.7152 | 0.7596 | 0.35 | 0.5034 | 0.7952 | 0.7919 | 0.8922 | 0.5883 | 0.8127 | 0.1407 | 0.6643 | -1.0 | -1.0 | 0.2459 | 0.6264 | 0.6884 | 0.7956 | 0.5692 | 0.7667 |
12.1564 | 8.0 | 400 | 8.8797 | 0.509 | 0.683 | 0.5708 | 0.35 | 0.2002 | 0.542 | 0.5565 | 0.7412 | 0.7722 | 0.35 | 0.5267 | 0.8006 | 0.782 | 0.8879 | 0.6009 | 0.8137 | 0.1517 | 0.6857 | -1.0 | -1.0 | 0.2626 | 0.6278 | 0.6564 | 0.785 | 0.6003 | 0.8333 |
11.5731 | 9.0 | 450 | 9.0043 | 0.5126 | 0.692 | 0.5879 | 0.4 | 0.2861 | 0.5548 | 0.5454 | 0.7211 | 0.7714 | 0.4 | 0.5199 | 0.8015 | 0.7828 | 0.8823 | 0.5674 | 0.8176 | 0.2052 | 0.6929 | -1.0 | -1.0 | 0.2661 | 0.6139 | 0.6843 | 0.7885 | 0.5698 | 0.8333 |
11.2251 | 10.0 | 500 | 8.9000 | 0.5134 | 0.6917 | 0.5749 | 0.4 | 0.2845 | 0.5538 | 0.5482 | 0.7189 | 0.7663 | 0.4 | 0.533 | 0.7931 | 0.7876 | 0.8879 | 0.5723 | 0.8118 | 0.1797 | 0.6857 | -1.0 | -1.0 | 0.2679 | 0.625 | 0.6726 | 0.7876 | 0.6 | 0.8 |
Framework versions
- Transformers 4.52.3
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 17
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for mrdbourke/rt_detrv2_finetuned_trashify_box_detector_v1
Base model
PekingU/rtdetr_v2_r50vd