ELECTRICIDAD: The Spanish Electra Imgur

Electricidad-base-discriminator (uncased) is a base Electra like model (discriminator in this case) trained on a Large Spanish Corpus (aka BETO's corpus)

As mentioned in the original paper: ELECTRA is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a GAN. At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the SQuAD 2.0 dataset.

For a detailed description and experimental results, please refer the paper ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.

Model details βš™

Name # Value
Layers 12
Hidden 768
Params 110M

Evaluation metrics (for discriminator) 🧾

Metric # Score
Accuracy 0.985
Precision 0.726
AUC 0.922

Fast example of usage πŸš€

from transformers import ElectraForPreTraining, ElectraTokenizerFast
import torch

discriminator = ElectraForPreTraining.from_pretrained("mrm8488/electricidad-base-discriminator")
tokenizer = ElectraTokenizerFast.from_pretrained("mrm8488/electricidad-base-discriminator")

sentence = "El rΓ‘pido zorro marrΓ³n salta sobre el perro perezoso"
fake_sentence = "El rΓ‘pido zorro marrΓ³n amar sobre el perro perezoso"

fake_tokens = tokenizer.tokenize(fake_sentence)
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
discriminator_outputs = discriminator(fake_inputs)
predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)

[print("%7s" % token, end="") for token in fake_tokens]

[print("%7s" % prediction, end="") for prediction in predictions.tolist()]

# Output:
'''
el rapido  zorro  marro    ##n   amar  sobre     el  perro   pere ##zoso    0.0    0.0    0.0    0.0    0.0    0.0    1.0    1.0    0.0    0.0    0.0    0.0    0.0[None, None, None, None, None, None, None, None, None, None, None, None, None
'''

As you can see there are 1s in the places where the model detected a fake token. So, it works! πŸŽ‰

Some models fine-tuned on a downstream task πŸ› οΈ

Question Answering

POS

NER

Spanish LM model comparison πŸ“Š

Dataset Metric RoBERTa-b RoBERTa-l BETO mBERT BERTIN Electricidad-b
UD-POS F1 0.9907 0.9901 0.9900 0.9886 0.9904 0.9818
Conll-NER F1 0.8851 0.8772 0.8759 0.8691 0.8627 0.7954
Capitel-POS F1 0.9846 0.9851 0.9836 0.9839 0.9826 0.9816
Capitel-NER F1 0.8959 0.8998 0.8771 0.8810 0.8741 0.8035
STS Combined 0.8423 0.8420 0.8216 0.8249 0.7822 0.8065
MLDoc Accuracy 0.9595 0.9600 0.9650 0.9560 0.9673 0.9490
PAWS-X F1 0.9035 0.9000 0.8915 0.9020 0.8820 0.9045
XNLI Accuracy 0.8016 0.7958 0.8130 0.7876 0.7864 0.7878

Acknowledgments

I thank πŸ€—/transformers team for allowing me to train the model (specially to Julien Chaumond).

Citation

If you want to cite this model you can use this:

@misc{mromero2020electricidad-base-discriminator,
  title={Spanish Electra by Manuel Romero},
  author={Romero, Manuel},
  publisher={Hugging Face},
  journal={Hugging Face Hub},
  howpublished={\url{https://huggingface.co/mrm8488/electricidad-base-discriminator/}},
  year={2020}
}

Created by Manuel Romero/@mrm8488

Made with β™₯ in Spain

Downloads last month
98
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for mrm8488/electricidad-base-discriminator

Adapters
1 model
Finetunes
117 models

Collection including mrm8488/electricidad-base-discriminator