whisper-tiny-uz / README.md
mrmuminov's picture
End of training
a852b18 verified
metadata
library_name: transformers
language:
  - uz
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_1
metrics:
  - wer
model-index:
  - name: Whisper Tiny UZ - Bahriddin Muminov
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 16.1
          type: mozilla-foundation/common_voice_16_1
          config: uz
          split: test
          args: 'config: uz, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 50.19916836282356

Whisper Tiny UZ - Bahriddin Muminov

This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5943
  • Wer: 50.1992

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6528 0.0352 2000 0.8591 62.8798
0.5201 0.0704 4000 0.7052 56.4951
0.4258 0.1056 6000 0.6407 53.7817
0.4136 0.1408 8000 0.6057 50.5588
0.4164 0.1760 10000 0.5943 50.1992

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1