ner-bert-german

This model can be used to do named-entity recognition in German. It is trained on a fine-tuned version of bert-base-multilingual-cased on the German wikiann dataset.

It achieves the following results on the evaluation set:

  • Loss: 0.2450
  • Overall Precision: 0.8767
  • Overall Recall: 0.8893
  • Overall F1: 0.8829
  • Overall Accuracy: 0.9606
  • Loc F1: 0.9067
  • Org F1: 0.8278
  • Per F1: 0.9152

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Overall Precision Overall Recall Overall F1 Overall Accuracy Loc F1 Org F1 Per F1
0.252 0.8 1000 0.1724 0.8422 0.8368 0.8395 0.9501 0.8702 0.7593 0.8921
0.1376 1.6 2000 0.1679 0.8388 0.8607 0.8497 0.9528 0.8814 0.7712 0.8971
0.0982 2.4 3000 0.1880 0.8631 0.8598 0.8614 0.9564 0.8847 0.7915 0.9070
0.0681 3.2 4000 0.1956 0.8599 0.8775 0.8686 0.9574 0.8905 0.8084 0.9097
0.0477 4.0 5000 0.2115 0.8738 0.8814 0.8776 0.9593 0.9003 0.8207 0.9144
0.031 4.8 6000 0.2274 0.8751 0.8826 0.8788 0.9598 0.9017 0.8246 0.9115
0.0229 5.6 7000 0.2317 0.8715 0.8888 0.8801 0.9598 0.9061 0.8208 0.9145
0.0181 6.4 8000 0.2450 0.8767 0.8893 0.8829 0.9606 0.9067 0.8278 0.9152

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
12,361
Safetensors
Model size
177M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mschiesser/ner-bert-german

Finetunes
3 models

Dataset used to train mschiesser/ner-bert-german