mit-b0-03-04-25-15-21_necrosis
This model is a fine-tuned version of nvidia/mit-b0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1459
- Mean Iou: 0.7491
- Mean Accuracy: 0.8053
- Overall Accuracy: 0.9465
- Accuracy Background: 0.9950
- Accuracy Necrosis: 0.5999
- Accuracy Root: 0.8210
- Iou Background: 0.9514
- Iou Necrosis: 0.5271
- Iou Root: 0.7687
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Necrosis | Accuracy Root | Iou Background | Iou Necrosis | Iou Root |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0286 | 0.625 | 20 | 1.0682 | 0.2971 | 0.5482 | 0.4605 | 0.3950 | 0.5573 | 0.6921 | 0.3931 | 0.0404 | 0.4577 |
0.8087 | 1.25 | 40 | 0.9066 | 0.4491 | 0.6758 | 0.6734 | 0.6231 | 0.5144 | 0.8901 | 0.6221 | 0.0597 | 0.6654 |
0.5207 | 1.875 | 60 | 0.7452 | 0.5011 | 0.7573 | 0.7185 | 0.6773 | 0.7209 | 0.8737 | 0.6762 | 0.0877 | 0.7393 |
0.4503 | 2.5 | 80 | 0.5908 | 0.5902 | 0.8478 | 0.8390 | 0.8422 | 0.8815 | 0.8199 | 0.8346 | 0.1719 | 0.7639 |
0.3617 | 3.125 | 100 | 0.7355 | 0.4588 | 0.7862 | 0.7203 | 0.6706 | 0.7915 | 0.8965 | 0.6659 | 0.1379 | 0.5726 |
0.2934 | 3.75 | 120 | 0.3994 | 0.6875 | 0.8473 | 0.9220 | 0.9489 | 0.7428 | 0.8502 | 0.9244 | 0.3873 | 0.7507 |
0.3384 | 4.375 | 140 | 0.3423 | 0.6961 | 0.8540 | 0.9276 | 0.9587 | 0.7662 | 0.8371 | 0.9332 | 0.3891 | 0.7659 |
0.3014 | 5.0 | 160 | 0.3397 | 0.6933 | 0.8418 | 0.9209 | 0.9532 | 0.7439 | 0.8282 | 0.9239 | 0.4393 | 0.7167 |
0.3316 | 5.625 | 180 | 0.3360 | 0.6717 | 0.8395 | 0.9088 | 0.9339 | 0.7433 | 0.8414 | 0.9076 | 0.4098 | 0.6979 |
0.2285 | 6.25 | 200 | 0.2552 | 0.7329 | 0.8140 | 0.9439 | 0.9727 | 0.5721 | 0.8973 | 0.9498 | 0.4681 | 0.7810 |
0.1486 | 6.875 | 220 | 0.2143 | 0.7410 | 0.8183 | 0.9470 | 0.9837 | 0.6061 | 0.8651 | 0.9526 | 0.4807 | 0.7898 |
0.2264 | 7.5 | 240 | 0.2154 | 0.7168 | 0.7719 | 0.9352 | 0.9956 | 0.5491 | 0.7710 | 0.9366 | 0.4871 | 0.7265 |
0.172 | 8.125 | 260 | 0.1926 | 0.7330 | 0.7920 | 0.9444 | 0.9906 | 0.5496 | 0.8358 | 0.9491 | 0.4799 | 0.7700 |
0.1841 | 8.75 | 280 | 0.2086 | 0.7252 | 0.8199 | 0.9352 | 0.9926 | 0.7112 | 0.7559 | 0.9405 | 0.5125 | 0.7225 |
0.1422 | 9.375 | 300 | 0.1668 | 0.7427 | 0.8002 | 0.9473 | 0.9922 | 0.5676 | 0.8409 | 0.9528 | 0.4972 | 0.7781 |
0.1747 | 10.0 | 320 | 0.1877 | 0.7257 | 0.8219 | 0.9401 | 0.9943 | 0.6956 | 0.7756 | 0.9496 | 0.4864 | 0.7409 |
0.1492 | 10.625 | 340 | 0.2011 | 0.7252 | 0.8346 | 0.9387 | 0.9887 | 0.7309 | 0.7842 | 0.9485 | 0.4869 | 0.7402 |
0.1835 | 11.25 | 360 | 0.1758 | 0.7429 | 0.8284 | 0.9438 | 0.9953 | 0.7006 | 0.7893 | 0.9512 | 0.5228 | 0.7547 |
0.2357 | 11.875 | 380 | 0.1770 | 0.7439 | 0.8264 | 0.9441 | 0.9941 | 0.6874 | 0.7978 | 0.9508 | 0.5223 | 0.7587 |
0.1232 | 12.5 | 400 | 0.1619 | 0.7534 | 0.8204 | 0.9504 | 0.9918 | 0.6205 | 0.8490 | 0.9575 | 0.5127 | 0.7901 |
0.1584 | 13.125 | 420 | 0.1911 | 0.7264 | 0.8091 | 0.9366 | 0.9947 | 0.6714 | 0.7613 | 0.9416 | 0.5111 | 0.7265 |
0.2099 | 13.75 | 440 | 0.1593 | 0.7495 | 0.8354 | 0.9485 | 0.9868 | 0.6695 | 0.8500 | 0.9563 | 0.5053 | 0.7869 |
0.2723 | 14.375 | 460 | 0.1668 | 0.7353 | 0.8029 | 0.9426 | 0.9906 | 0.5995 | 0.8185 | 0.9477 | 0.4999 | 0.7583 |
0.1406 | 15.0 | 480 | 0.1714 | 0.7404 | 0.8172 | 0.9426 | 0.9918 | 0.6555 | 0.8043 | 0.9477 | 0.5170 | 0.7564 |
0.1624 | 15.625 | 500 | 0.1527 | 0.7445 | 0.8007 | 0.9511 | 0.9913 | 0.5435 | 0.8674 | 0.9591 | 0.4811 | 0.7934 |
0.1519 | 16.25 | 520 | 0.1503 | 0.7459 | 0.8044 | 0.9495 | 0.9936 | 0.5743 | 0.8455 | 0.9568 | 0.4973 | 0.7837 |
0.0996 | 16.875 | 540 | 0.1437 | 0.7551 | 0.8216 | 0.9524 | 0.9898 | 0.6065 | 0.8685 | 0.9607 | 0.5066 | 0.7981 |
0.3985 | 17.5 | 560 | 0.1520 | 0.7355 | 0.7891 | 0.9472 | 0.9931 | 0.5310 | 0.8431 | 0.9535 | 0.4759 | 0.7771 |
0.0979 | 18.125 | 580 | 0.1586 | 0.7447 | 0.8072 | 0.9453 | 0.9940 | 0.6105 | 0.8171 | 0.9502 | 0.5178 | 0.7661 |
0.1027 | 18.75 | 600 | 0.1482 | 0.7551 | 0.8261 | 0.9482 | 0.9937 | 0.6605 | 0.8242 | 0.9544 | 0.5341 | 0.7768 |
0.1372 | 19.375 | 620 | 0.1504 | 0.7487 | 0.8107 | 0.9463 | 0.9947 | 0.6195 | 0.8180 | 0.9512 | 0.5256 | 0.7693 |
0.1219 | 20.0 | 640 | 0.1473 | 0.7558 | 0.8297 | 0.9488 | 0.9944 | 0.6723 | 0.8223 | 0.9556 | 0.5331 | 0.7786 |
0.1045 | 20.625 | 660 | 0.1827 | 0.7228 | 0.8050 | 0.9333 | 0.9962 | 0.6811 | 0.7375 | 0.9373 | 0.5231 | 0.7080 |
0.1034 | 21.25 | 680 | 0.1534 | 0.7489 | 0.8431 | 0.9451 | 0.9939 | 0.7407 | 0.7946 | 0.9537 | 0.5347 | 0.7583 |
0.2095 | 21.875 | 700 | 0.1469 | 0.7401 | 0.7944 | 0.9477 | 0.9935 | 0.5486 | 0.8411 | 0.9543 | 0.4900 | 0.7760 |
0.2314 | 22.5 | 720 | 0.1474 | 0.7529 | 0.8222 | 0.9493 | 0.9933 | 0.6387 | 0.8345 | 0.9566 | 0.5206 | 0.7814 |
0.1133 | 23.125 | 740 | 0.1645 | 0.7352 | 0.8301 | 0.9404 | 0.9956 | 0.7276 | 0.7671 | 0.9486 | 0.5204 | 0.7366 |
0.0817 | 23.75 | 760 | 0.1341 | 0.7563 | 0.8089 | 0.9537 | 0.9936 | 0.5653 | 0.8678 | 0.9612 | 0.5056 | 0.8020 |
0.1422 | 24.375 | 780 | 0.1359 | 0.7622 | 0.8287 | 0.9521 | 0.9919 | 0.6404 | 0.8537 | 0.9595 | 0.5333 | 0.7937 |
0.0963 | 25.0 | 800 | 0.1450 | 0.7558 | 0.8365 | 0.9487 | 0.9945 | 0.6977 | 0.8172 | 0.9568 | 0.5359 | 0.7748 |
0.085 | 25.625 | 820 | 0.1543 | 0.7370 | 0.7929 | 0.9441 | 0.9952 | 0.5704 | 0.8132 | 0.9491 | 0.5024 | 0.7596 |
0.2654 | 26.25 | 840 | 0.1599 | 0.7338 | 0.7903 | 0.9424 | 0.9957 | 0.5727 | 0.8027 | 0.9472 | 0.5030 | 0.7511 |
0.1506 | 26.875 | 860 | 0.1503 | 0.7478 | 0.8091 | 0.9466 | 0.9940 | 0.6096 | 0.8236 | 0.9526 | 0.5227 | 0.7681 |
0.114 | 27.5 | 880 | 0.1440 | 0.7463 | 0.8029 | 0.9488 | 0.9938 | 0.5738 | 0.8412 | 0.9556 | 0.5037 | 0.7795 |
0.0748 | 28.125 | 900 | 0.1611 | 0.7362 | 0.7949 | 0.9416 | 0.9956 | 0.5935 | 0.7957 | 0.9461 | 0.5162 | 0.7463 |
0.1368 | 28.75 | 920 | 0.1457 | 0.7496 | 0.8074 | 0.9477 | 0.9948 | 0.5993 | 0.8281 | 0.9535 | 0.5214 | 0.7737 |
0.0836 | 29.375 | 940 | 0.1622 | 0.7170 | 0.7663 | 0.9408 | 0.9951 | 0.4931 | 0.8106 | 0.9464 | 0.4579 | 0.7469 |
0.215 | 30.0 | 960 | 0.1340 | 0.7450 | 0.7959 | 0.9511 | 0.9945 | 0.5366 | 0.8566 | 0.9588 | 0.4857 | 0.7905 |
0.1397 | 30.625 | 980 | 0.1370 | 0.7417 | 0.7931 | 0.9495 | 0.9945 | 0.5367 | 0.8480 | 0.9568 | 0.4853 | 0.7830 |
0.1468 | 31.25 | 1000 | 0.1373 | 0.7591 | 0.8221 | 0.9507 | 0.9944 | 0.6332 | 0.8387 | 0.9574 | 0.5337 | 0.7863 |
0.0733 | 31.875 | 1020 | 0.1380 | 0.7439 | 0.7946 | 0.9500 | 0.9943 | 0.5380 | 0.8515 | 0.9573 | 0.4894 | 0.7851 |
0.1454 | 32.5 | 1040 | 0.1414 | 0.7522 | 0.8106 | 0.9487 | 0.9947 | 0.6048 | 0.8324 | 0.9548 | 0.5235 | 0.7781 |
0.1203 | 33.125 | 1060 | 0.1459 | 0.7498 | 0.8197 | 0.9467 | 0.9952 | 0.6512 | 0.8126 | 0.9531 | 0.5282 | 0.7681 |
0.2697 | 33.75 | 1080 | 0.1381 | 0.7541 | 0.8128 | 0.9494 | 0.9944 | 0.6080 | 0.8359 | 0.9554 | 0.5256 | 0.7815 |
0.0884 | 34.375 | 1100 | 0.1629 | 0.7276 | 0.7795 | 0.9403 | 0.9961 | 0.5474 | 0.7950 | 0.9443 | 0.4961 | 0.7426 |
0.1911 | 35.0 | 1120 | 0.1395 | 0.7585 | 0.8293 | 0.9501 | 0.9935 | 0.6603 | 0.8341 | 0.9574 | 0.5354 | 0.7827 |
0.129 | 35.625 | 1140 | 0.1709 | 0.7278 | 0.7804 | 0.9399 | 0.9955 | 0.5512 | 0.7946 | 0.9440 | 0.4991 | 0.7402 |
0.0965 | 36.25 | 1160 | 0.1409 | 0.7472 | 0.7995 | 0.9490 | 0.9948 | 0.5633 | 0.8403 | 0.9552 | 0.5057 | 0.7806 |
0.0956 | 36.875 | 1180 | 0.1403 | 0.7389 | 0.7885 | 0.9489 | 0.9942 | 0.5223 | 0.8491 | 0.9559 | 0.4793 | 0.7817 |
0.1023 | 37.5 | 1200 | 0.1512 | 0.7438 | 0.8022 | 0.9447 | 0.9952 | 0.6001 | 0.8113 | 0.9495 | 0.5208 | 0.7610 |
0.1341 | 38.125 | 1220 | 0.1527 | 0.7422 | 0.7961 | 0.9450 | 0.9953 | 0.5771 | 0.8159 | 0.9496 | 0.5143 | 0.7627 |
0.0669 | 38.75 | 1240 | 0.1340 | 0.7459 | 0.7950 | 0.9516 | 0.9938 | 0.5282 | 0.8630 | 0.9591 | 0.4851 | 0.7933 |
0.2038 | 39.375 | 1260 | 0.1347 | 0.7572 | 0.8120 | 0.9509 | 0.9946 | 0.5967 | 0.8446 | 0.9568 | 0.5269 | 0.7879 |
0.1287 | 40.0 | 1280 | 0.1554 | 0.7415 | 0.7959 | 0.9433 | 0.9957 | 0.5872 | 0.8046 | 0.9471 | 0.5224 | 0.7550 |
0.1505 | 40.625 | 1300 | 0.1353 | 0.7470 | 0.7972 | 0.9499 | 0.9946 | 0.5491 | 0.8477 | 0.9563 | 0.4997 | 0.7851 |
0.0827 | 41.25 | 1320 | 0.1408 | 0.7522 | 0.8089 | 0.9481 | 0.9947 | 0.6021 | 0.8300 | 0.9535 | 0.5274 | 0.7757 |
0.1537 | 41.875 | 1340 | 0.1469 | 0.7468 | 0.8007 | 0.9458 | 0.9950 | 0.5874 | 0.8196 | 0.9504 | 0.5244 | 0.7656 |
0.1328 | 42.5 | 1360 | 0.1415 | 0.7490 | 0.8030 | 0.9477 | 0.9948 | 0.5835 | 0.8306 | 0.9531 | 0.5199 | 0.7741 |
0.0971 | 43.125 | 1380 | 0.1330 | 0.7578 | 0.8133 | 0.9515 | 0.9943 | 0.5966 | 0.8489 | 0.9580 | 0.5252 | 0.7903 |
0.1021 | 43.75 | 1400 | 0.1332 | 0.7520 | 0.8033 | 0.9512 | 0.9945 | 0.5634 | 0.8521 | 0.9579 | 0.5086 | 0.7894 |
0.0707 | 44.375 | 1420 | 0.1404 | 0.7496 | 0.8029 | 0.9481 | 0.9952 | 0.5825 | 0.8311 | 0.9536 | 0.5201 | 0.7753 |
0.0767 | 45.0 | 1440 | 0.1388 | 0.7520 | 0.8066 | 0.9486 | 0.9949 | 0.5916 | 0.8332 | 0.9543 | 0.5243 | 0.7775 |
0.0747 | 45.625 | 1460 | 0.1351 | 0.7594 | 0.8200 | 0.9504 | 0.9944 | 0.6274 | 0.8383 | 0.9567 | 0.5369 | 0.7846 |
0.2155 | 46.25 | 1480 | 0.1413 | 0.7549 | 0.8147 | 0.9478 | 0.9949 | 0.6254 | 0.8237 | 0.9531 | 0.5384 | 0.7732 |
0.0757 | 46.875 | 1500 | 0.1379 | 0.7560 | 0.8147 | 0.9495 | 0.9944 | 0.6137 | 0.8359 | 0.9555 | 0.5314 | 0.7810 |
0.1457 | 47.5 | 1520 | 0.1528 | 0.7459 | 0.8057 | 0.9441 | 0.9955 | 0.6174 | 0.8042 | 0.9484 | 0.5323 | 0.7570 |
0.0952 | 48.125 | 1540 | 0.1542 | 0.7467 | 0.8072 | 0.9438 | 0.9955 | 0.6246 | 0.8015 | 0.9479 | 0.5368 | 0.7556 |
0.1606 | 48.75 | 1560 | 0.1465 | 0.7526 | 0.8136 | 0.9464 | 0.9950 | 0.6303 | 0.8154 | 0.9512 | 0.5393 | 0.7672 |
0.1153 | 49.375 | 1580 | 0.1411 | 0.7511 | 0.8063 | 0.9483 | 0.9946 | 0.5916 | 0.8328 | 0.9539 | 0.5225 | 0.7768 |
0.065 | 50.0 | 1600 | 0.1459 | 0.7491 | 0.8053 | 0.9465 | 0.9950 | 0.5999 | 0.8210 | 0.9514 | 0.5271 | 0.7687 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for mujerry/mit-b0-03-04-25-15-21_necrosis
Base model
nvidia/mit-b0