mwitiderrick's picture
Adding Evaluation Results (#1)
cee588a verified
metadata
language:
  - en
license: apache-2.0
library_name: transformers
tags:
  - transformers
datasets:
  - mwitiderrick/AlpacaCode
base_model: openlm-research/open_llama_3b
inference: true
model_type: llama
prompt_template: |
  ### Instruction:\n
  {prompt}
  ### Response:
created_by: mwitiderrick
pipeline_tag: text-generation
model-index:
  - name: mwitiderrick/open_llama_3b_instruct_v_0.2
    results:
      - task:
          type: text-generation
        dataset:
          name: hellaswag
          type: hellaswag
        metrics:
          - type: hellaswag (0-Shot)
            value: 0.6581
            name: hellaswag(0-Shot)
      - task:
          type: text-generation
        dataset:
          name: winogrande
          type: winogrande
        metrics:
          - type: winogrande (0-Shot)
            value: 0.6267
            name: winogrande(0-Shot)
      - task:
          type: text-generation
        dataset:
          name: arc_challenge
          type: arc_challenge
        metrics:
          - type: arc_challenge (0-Shot)
            value: 0.3712
            name: arc_challenge(0-Shot)
        source:
          url: https://huggingface.co/mwitiderrick/open_llama_3b_instruct_v_0.2
          name: open_llama_3b_instruct_v_0.2 model card
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 41.21
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_code_instruct_0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 66.96
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_code_instruct_0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 27.82
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_code_instruct_0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 35.01
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_code_instruct_0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 65.43
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_code_instruct_0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 1.9
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_code_instruct_0.1
          name: Open LLM Leaderboard

OpenLLaMA Code Instruct: An Open Reproduction of LLaMA

This is an OpenLlama model that has been fine-tuned on 1 epoch of the AlpacaCode dataset (122K rows).

Prompt Template

### Instruction:

{query}

### Response:
<Leave new line for model to respond> 

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM,pipeline

tokenizer = AutoTokenizer.from_pretrained("mwitiderrick/open_llama_3b_code_instruct_0.1")
model = AutoModelForCausalLM.from_pretrained("mwitiderrick/open_llama_3b_code_instruct_0.1")
query = "Write a quick sort algorithm in Python"
text_gen = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
output = text_gen(f"### Instruction:\n{query}\n### Response:\n")
print(output[0]['generated_text'])
"""
### Instruction:
write a quick sort algorithm in Python
### Response:
def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    else:
        pivot = arr[len(arr) // 2]
        left = [x for x in arr if x < pivot]
        middle = [x for x in arr if x == pivot]
        right = [x for x in arr if x > pivot]
        return quick_sort(left) + middle + quick_sort(right)

arr = [5,2,4,3,1]
print(quick_sort(arr))
"""
[1, 2, 3, 4, 5]
"""

Metrics

Detailed metrics

|  Tasks   |Version|Filter|n-shot|Metric|Value |   |Stderr|
|----------|-------|------|-----:|------|-----:|---|-----:|
|winogrande|Yaml   |none  |     0|acc   |0.6267|±  |0.0136|
|hellaswag|Yaml   |none  |     0|acc     |0.4962|±  |0.0050|
|         |       |none  |     0|acc_norm|0.6581|±  |0.0047|
|arc_challenge|Yaml   |none  |     0|acc     |0.3481|±  |0.0139|
|             |       |none  |     0|acc_norm|0.3712|±  |0.0141|
|truthfulqa|N/A    |none  |     0|bleu_max   | 24.2580|±  |0.5985|
|          |       |none  |     0|bleu_acc   |  0.2876|±  |0.0003|
|          |       |none  |     0|bleu_diff  | -8.3685|±  |0.6065|
|          |       |none  |     0|rouge1_max | 49.3907|±  |0.7350|
|          |       |none  |     0|rouge1_acc |  0.2558|±  |0.0002|
|          |       |none  |     0|rouge1_diff|-10.6617|±  |0.6450|
|          |       |none  |     0|rouge2_max | 32.4189|±  |0.9587|
|          |       |none  |     0|rouge2_acc |  0.2142|±  |0.0002|
|          |       |none  |     0|rouge2_diff|-12.9903|±  |0.9539|
|          |       |none  |     0|rougeL_max | 46.2337|±  |0.7493|
|          |       |none  |     0|rougeL_acc |  0.2424|±  |0.0002|
|          |       |none  |     0|rougeL_diff|-11.0285|±  |0.6576|
|          |       |none  |     0|acc        |  0.3072|±  |0.0405|

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 39.72
AI2 Reasoning Challenge (25-Shot) 41.21
HellaSwag (10-Shot) 66.96
MMLU (5-Shot) 27.82
TruthfulQA (0-shot) 35.01
Winogrande (5-shot) 65.43
GSM8k (5-shot) 1.90