widget:
- text: >-
Dih apaan banget dah buang sampah ke sungai begitu. Ada aktivis lingkungan
yg sampe dipenjara karena menyuarakan peduli lingkungan. Ini pengangguran
satu malah enak bener buang sampah sembarangan. Pantes lu susah, kelakuan
lu nyusahin orang lain sih.
example_title: Example 1
output:
- label: Disgust
score: 0.672
- label: Anger
score: 0.282
- label: Sadness
score: 0.033
- label: Joy
score: 0.004
- label: Surprise
score: 0.003
- label: Trust
score: 0.003
- label: Fear
score: 0.002
- label: Anticipation
score: 0.001
- text: >-
Februari 2009, wartawan Jawa Pos Radar Bali dibunuh dengan keji karena
berita korupsi. Januari 2019, Presiden memberikan grasi kepada otak
pembunuhan Prabangsa, dari seumur hidup menjadi cuma 20 tahun penjara.
Sebuah langkah mundur yang menyakitkan!
example_title: Example 2
output:
- label: Sadness
score: 0.604
- label: Anger
score: 0.194
- label: Surprise
score: 0.127
- label: Joy
score: 0.021
- label: Fear
score: 0.018
- label: Disgust
score: 0.018
- label: Anticipation
score: 0.016
- label: Trust
score: 0.003
- text: >-
Salut banget sama perjalanan hidup mereka ini kalo diproduksi jadi film
pasti bakal rame dan menginspirasi banget woi
example_title: Example 3
output:
- label: Joy
score: 0.9637
- label: Trust
score: 0.0219
- label: Anticipation
score: 0.0079
- label: Surprise
score: 0.0029
- label: Disgust
score: 0.0013
- label: Sadness
score: 0.001
- label: Anger
score: 0.0007
- label: Fear
score: 0.0006
- text: >-
SUMPAH HARUS DIBEBASKAN!!! KENAPA GAK TANGKEPIN KORUPTOR AJA DARIPADA
NGURUSIN MEME DARI AI GW MARAH BANGET SHIBAL
example_title: Example 4
output:
- label: Anger
score: 0.9889
- label: Disgust
score: 0.0035
- label: Sadness
score: 0.0026
- label: Fear
score: 0.0015
- label: Surprise
score: 0.0012
- label: Trust
score: 0.0011
- label: Anticipation
score: 0.0009
- label: Joy
score: 0.0003
- text: >-
ga pernah pacaran, sekarang hidup kesepian bgt. pengen minta kenalin cowo
ke temen tp mereka jg sama struggle nya. jd nyesel dulu pas sekolah-kuliah
kenapa ga pernah 'macem2'
example_title: Example 5
output:
- label: Sadness
score: 0.9526
- label: Anger
score: 0.0175
- label: Fear
score: 0.0114
- label: Disgust
score: 0.0079
- label: Trust
score: 0.0038
- label: Anticipation
score: 0.0036
- label: Joy
score: 0.0019
- label: Surprise
score: 0.0013
- text: >-
Komisi Penyiaran Indonesia (KPI) meminta agar tayangan televisi
menampilkan citra positif Polri secara edukatif dan akurat. Hal ini
disampaikan ketua KPI Pusat Ubaidillah dalam sebuah diskusi panel
example_title: Example 6
output:
- label: Anticipation
score: 0.4323
- label: Trust
score: 0.3996
- label: Joy
score: 0.05
- label: Anger
score: 0.0388
- label: Disgust
score: 0.0362
- label: Surprise
score: 0.0186
- label: Fear
score: 0.0137
- label: Sadness
score: 0.0108
library_name: transformers
license: mit
language:
- id
Model Details
Model Description
The EmoSense-ID is a model designed to identify and analyze emotions in Indonesian texts based on Plutchik's eight basic emotions: Anticipation, Anger, Disgust, Fear, Joy, Sadness, Surprise, and Trust. This model is developed using the NusaBERT-base and trained using Indonesian tweets categorized into eight emotion categories. The evaluation results of this model can be utilized to analyze emotions in social media, providing insights into users' emotional responses.
Bias
Keep in mind that this model is trained using certain data which may cause bias in the emotion classification process. Therefore, it is important to consider and account for such biases when using this model.
Evaluation Results
The model was trained using the Hyperparameter Tuning technique with Optuna. In this process, Optuna conducted five trials to determine the optimal combination of learning rate (1e-6 to 1e-4) and weight decay (1e-6 to 1e-2). Each trial trained the BERT model with different hyperparameter configurations on the training dataset and then evaluated using the validation dataset. After all the experiments are completed, the best hyperparameter combination is used to train the final model.
Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|
1 | 0.758400 | 0.583508 | 0.829932 | 0.830203 | 0.833136 | 0.829932 |
2 | 0.370100 | 0.394630 | 0.866213 | 0.865496 | 0.870364 | 0.866213 |
3 | 0.231500 | 0.355294 | 0.884354 | 0.884585 | 0.888140 | 0.884354 |
4 | 0.071000 | 0.322376 | 0.902494 | 0.902801 | 0.904842 | 0.902494 |
5 | 0.129900 | 0.308596 | 0.900227 | 0.900340 | 0.902132 | 0.900227 |
Citation
@misc{Ardiyanto_Mikhael_2024,
author = {Mikhael Ardiyanto},
title = {EmoSense-ID},
year = {2024},
URL = {Aardiiiiy/EmoSense-ID-Indonesian-Emotion-Classifier},
publisher = {Hugging Face}
}