Raihan Hidayatullah Djunaedi
commited on
Commit
·
94028e0
1
Parent(s):
099e31f
Update README.md to enhance model documentation and examples for zero-shot classification
Browse files- README.md +114 -39
- UPLOAD_INSTRUCTIONS.md +112 -0
- example_usage.py +95 -0
- requirements.txt +4 -0
- tokenizer_config.json +17 -1
README.md
CHANGED
@@ -1,47 +1,90 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
- multilingual
|
4 |
-
- en
|
5 |
-
- fr
|
6 |
-
- es
|
7 |
-
- de
|
8 |
-
- el
|
9 |
-
- bg
|
10 |
-
- ru
|
11 |
-
- tr
|
12 |
-
- ar
|
13 |
-
- vi
|
14 |
-
- th
|
15 |
-
- zh
|
16 |
-
- hi
|
17 |
-
- sw
|
18 |
-
- ur
|
19 |
tags:
|
20 |
-
- text-classification
|
21 |
-
- pytorch
|
22 |
-
- tensorflow
|
|
|
|
|
|
|
|
|
|
|
23 |
datasets:
|
24 |
-
- multi_nli
|
25 |
-
- xnli
|
26 |
license: mit
|
27 |
pipeline_tag: zero-shot-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
widget:
|
29 |
-
- text: "За кого вы голосуете в 2020 году?"
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
---
|
39 |
|
40 |
-
#
|
41 |
|
42 |
## Model Description
|
43 |
|
44 |
-
This model takes [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) and fine-tunes it on a combination of NLI data in 15 languages.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
## Intended Usage
|
47 |
|
@@ -72,14 +115,14 @@ For English-only classification, it is recommended to use
|
|
72 |
[bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) or
|
73 |
[a distilled bart MNLI model](https://huggingface.co/models?filter=pipeline_tag%3Azero-shot-classification&search=valhalla).
|
74 |
|
75 |
-
|
76 |
|
77 |
The model can be loaded with the `zero-shot-classification` pipeline like so:
|
78 |
|
79 |
```python
|
80 |
from transformers import pipeline
|
81 |
classifier = pipeline("zero-shot-classification",
|
82 |
-
model="
|
83 |
```
|
84 |
|
85 |
You can then classify in any of the above languages. You can even pass the labels in one language and the sequence to
|
@@ -109,13 +152,13 @@ classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesi
|
|
109 |
# 'sequence': '¿A quién vas a votar en 2020?'}
|
110 |
```
|
111 |
|
112 |
-
|
113 |
|
114 |
```python
|
115 |
# pose sequence as a NLI premise and label as a hypothesis
|
116 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
117 |
-
nli_model = AutoModelForSequenceClassification.from_pretrained('
|
118 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
119 |
|
120 |
premise = sequence
|
121 |
hypothesis = f'This example is {label}.'
|
@@ -126,7 +169,7 @@ x = tokenizer.encode(premise, hypothesis, return_tensors='pt',
|
|
126 |
logits = nli_model(x.to(device))[0]
|
127 |
|
128 |
# we throw away "neutral" (dim 1) and take the probability of
|
129 |
-
# "entailment" (2) as the probability of the label being true
|
130 |
entail_contradiction_logits = logits[:,[0,2]]
|
131 |
probs = entail_contradiction_logits.softmax(dim=1)
|
132 |
prob_label_is_true = probs[:,1]
|
@@ -139,3 +182,35 @@ This model was pre-trained on set of 100 languages, as described in
|
|
139 |
MNLI train set and the XNLI validation and test sets. Finally, it was trained for one additional epoch on only XNLI
|
140 |
data where the translations for the premise and hypothesis are shuffled such that the premise and hypothesis for
|
141 |
each example come from the same original English example but the premise and hypothesis are of different languages.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- multilingual
|
4 |
+
- en
|
5 |
+
- fr
|
6 |
+
- es
|
7 |
+
- de
|
8 |
+
- el
|
9 |
+
- bg
|
10 |
+
- ru
|
11 |
+
- tr
|
12 |
+
- ar
|
13 |
+
- vi
|
14 |
+
- th
|
15 |
+
- zh
|
16 |
+
- hi
|
17 |
+
- sw
|
18 |
+
- ur
|
19 |
tags:
|
20 |
+
- text-classification
|
21 |
+
- pytorch
|
22 |
+
- tensorflow
|
23 |
+
- zero-shot-classification
|
24 |
+
- xlm-roberta
|
25 |
+
- multilingual
|
26 |
+
- nli
|
27 |
+
- natural-language-inference
|
28 |
datasets:
|
29 |
+
- multi_nli
|
30 |
+
- xnli
|
31 |
license: mit
|
32 |
pipeline_tag: zero-shot-classification
|
33 |
+
library_name: transformers
|
34 |
+
model-index:
|
35 |
+
- name: xlm-roberta-large-xnli
|
36 |
+
results:
|
37 |
+
- task:
|
38 |
+
type: zero-shot-classification
|
39 |
+
name: Zero-Shot Classification
|
40 |
+
dataset:
|
41 |
+
name: XNLI
|
42 |
+
type: xnli
|
43 |
widget:
|
44 |
+
- text: "За кого вы голосуете в 2020 году?"
|
45 |
+
candidate_labels: "politique étrangère, Europe, élections, affaires, politique"
|
46 |
+
multi_class: true
|
47 |
+
example_title: "Russian Political Classification"
|
48 |
+
- text: "لمن تصوت في 2020؟"
|
49 |
+
candidate_labels: "السياسة الخارجية, أوروبا, الانتخابات, الأعمال, السياسة"
|
50 |
+
multi_class: true
|
51 |
+
example_title: "Arabic Political Classification"
|
52 |
+
- text: "2020'de kime oy vereceksiniz?"
|
53 |
+
candidate_labels: "dış politika, Avrupa, seçimler, ticaret, siyaset"
|
54 |
+
multi_class: true
|
55 |
+
example_title: "Turkish Political Classification"
|
56 |
+
- text: "I love this movie"
|
57 |
+
candidate_labels: "positive, negative, neutral"
|
58 |
+
multi_class: false
|
59 |
+
example_title: "English Sentiment Analysis"
|
60 |
---
|
61 |
|
62 |
+
# XLM-RoBERTa Large for Zero-Shot Classification (XNLI)
|
63 |
|
64 |
## Model Description
|
65 |
|
66 |
+
This model is based on the excellent work by [joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli). It takes [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) and fine-tunes it on a combination of NLI data in 15 languages.
|
67 |
+
|
68 |
+
**Original Model Credit**: This model is a copy of [joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) by Joe Davison. All credit for the training and development goes to the original author.
|
69 |
+
|
70 |
+
This model is intended to be used for zero-shot text classification, such as with the Hugging Face [ZeroShotClassificationPipeline](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.ZeroShotClassificationPipeline).
|
71 |
+
|
72 |
+
## Quick Start
|
73 |
+
|
74 |
+
```python
|
75 |
+
from transformers import pipeline
|
76 |
+
|
77 |
+
# Load the zero-shot classification pipeline
|
78 |
+
classifier = pipeline("zero-shot-classification",
|
79 |
+
model="YOUR_USERNAME/zero-shot-classification")
|
80 |
+
|
81 |
+
# Example usage
|
82 |
+
text = "I love this new smartphone, it's amazing!"
|
83 |
+
candidate_labels = ["technology", "sports", "politics", "entertainment"]
|
84 |
+
|
85 |
+
result = classifier(text, candidate_labels)
|
86 |
+
print(result)
|
87 |
+
```
|
88 |
|
89 |
## Intended Usage
|
90 |
|
|
|
115 |
[bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) or
|
116 |
[a distilled bart MNLI model](https://huggingface.co/models?filter=pipeline_tag%3Azero-shot-classification&search=valhalla).
|
117 |
|
118 |
+
### Using the zero-shot classification pipeline
|
119 |
|
120 |
The model can be loaded with the `zero-shot-classification` pipeline like so:
|
121 |
|
122 |
```python
|
123 |
from transformers import pipeline
|
124 |
classifier = pipeline("zero-shot-classification",
|
125 |
+
model="YOUR_USERNAME/zero-shot-classification")
|
126 |
```
|
127 |
|
128 |
You can then classify in any of the above languages. You can even pass the labels in one language and the sequence to
|
|
|
152 |
# 'sequence': '¿A quién vas a votar en 2020?'}
|
153 |
```
|
154 |
|
155 |
+
### Using with manual PyTorch
|
156 |
|
157 |
```python
|
158 |
# pose sequence as a NLI premise and label as a hypothesis
|
159 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
160 |
+
nli_model = AutoModelForSequenceClassification.from_pretrained('YOUR_USERNAME/zero-shot-classification')
|
161 |
+
tokenizer = AutoTokenizer.from_pretrained('YOUR_USERNAME/zero-shot-classification')
|
162 |
|
163 |
premise = sequence
|
164 |
hypothesis = f'This example is {label}.'
|
|
|
169 |
logits = nli_model(x.to(device))[0]
|
170 |
|
171 |
# we throw away "neutral" (dim 1) and take the probability of
|
172 |
+
# "entailment" (2) as the probability of the label being true
|
173 |
entail_contradiction_logits = logits[:,[0,2]]
|
174 |
probs = entail_contradiction_logits.softmax(dim=1)
|
175 |
prob_label_is_true = probs[:,1]
|
|
|
182 |
MNLI train set and the XNLI validation and test sets. Finally, it was trained for one additional epoch on only XNLI
|
183 |
data where the translations for the premise and hypothesis are shuffled such that the premise and hypothesis for
|
184 |
each example come from the same original English example but the premise and hypothesis are of different languages.
|
185 |
+
|
186 |
+
## Model Performance
|
187 |
+
|
188 |
+
This model achieves excellent performance on multilingual zero-shot classification tasks. For detailed performance metrics, please refer to the [original model](https://huggingface.co/joeddav/xlm-roberta-large-xnli).
|
189 |
+
|
190 |
+
## Limitations and Bias
|
191 |
+
|
192 |
+
- The model may have biases inherited from the training data (MNLI and XNLI datasets)
|
193 |
+
- Performance may vary across different languages and domains
|
194 |
+
- The model works best with the 15 languages explicitly included in the XNLI training data
|
195 |
+
- For English-only tasks, consider using specialized English models like `facebook/bart-large-mnli`
|
196 |
+
|
197 |
+
## Citation
|
198 |
+
|
199 |
+
If you use this model, please cite the original work:
|
200 |
+
|
201 |
+
```bibtex
|
202 |
+
@misc{davison2020zero,
|
203 |
+
title={Zero-Shot Learning in Modern NLP},
|
204 |
+
author={Joe Davison},
|
205 |
+
year={2020},
|
206 |
+
howpublished={\url{https://joeddav.github.io/blog/2020/05/29/ZSL.html}},
|
207 |
+
}
|
208 |
+
```
|
209 |
+
|
210 |
+
## License
|
211 |
+
|
212 |
+
This model is released under the MIT License, following the original model's licensing.
|
213 |
+
|
214 |
+
## Contact
|
215 |
+
|
216 |
+
This is a copy of the original model by Joe Davison. For questions about the model architecture and training, please refer to the [original repository](https://huggingface.co/joeddav/xlm-roberta-large-xnli).
|
UPLOAD_INSTRUCTIONS.md
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# How to Upload Your Model to Hugging Face
|
2 |
+
|
3 |
+
Follow these steps to upload your zero-shot classification model to Hugging Face and make it available for use through the transformers library.
|
4 |
+
|
5 |
+
## Prerequisites
|
6 |
+
|
7 |
+
1. Install required packages:
|
8 |
+
|
9 |
+
```bash
|
10 |
+
pip install huggingface_hub transformers
|
11 |
+
```
|
12 |
+
|
13 |
+
2. Create a Hugging Face account at https://huggingface.co/
|
14 |
+
|
15 |
+
3. Get your access token:
|
16 |
+
- Go to https://huggingface.co/settings/tokens
|
17 |
+
- Create a new token with "Write" permissions
|
18 |
+
- Copy the token (keep it secure!)
|
19 |
+
|
20 |
+
## Upload Steps
|
21 |
+
|
22 |
+
### Method 1: Using the Web Interface (Recommended for beginners)
|
23 |
+
|
24 |
+
1. Go to https://huggingface.co/new
|
25 |
+
2. Choose "Model" and give it a name (e.g., `zero-shot-classification`)
|
26 |
+
3. Set visibility (Public/Private)
|
27 |
+
4. Click "Create model repository"
|
28 |
+
5. Upload files using the web interface:
|
29 |
+
- Drag and drop all files from your model directory
|
30 |
+
- Or use git (see Method 2)
|
31 |
+
|
32 |
+
### Method 2: Using Git/Command Line
|
33 |
+
|
34 |
+
1. Login to Hugging Face CLI:
|
35 |
+
|
36 |
+
```bash
|
37 |
+
huggingface-cli login
|
38 |
+
# Enter your token when prompted
|
39 |
+
```
|
40 |
+
|
41 |
+
2. Clone your repository:
|
42 |
+
|
43 |
+
```bash
|
44 |
+
git clone https://huggingface.co/YOUR_USERNAME/zero-shot-classification
|
45 |
+
cd zero-shot-classification
|
46 |
+
```
|
47 |
+
|
48 |
+
3. Copy your model files:
|
49 |
+
|
50 |
+
```bash
|
51 |
+
# Copy all files from your model directory to the cloned repository
|
52 |
+
cp /path/to/your/model/* .
|
53 |
+
```
|
54 |
+
|
55 |
+
4. Upload to Hugging Face:
|
56 |
+
|
57 |
+
```bash
|
58 |
+
git add .
|
59 |
+
git commit -m "Upload XLM-RoBERTa zero-shot classification model"
|
60 |
+
git push
|
61 |
+
```
|
62 |
+
|
63 |
+
### Method 3: Using Python API
|
64 |
+
|
65 |
+
```python
|
66 |
+
from huggingface_hub import HfApi, create_repo
|
67 |
+
|
68 |
+
# Initialize API
|
69 |
+
api = HfApi()
|
70 |
+
|
71 |
+
# Create repository (optional if not exists)
|
72 |
+
repo_id = "YOUR_USERNAME/zero-shot-classification"
|
73 |
+
create_repo(repo_id, repo_type="model", private=False)
|
74 |
+
|
75 |
+
# Upload files
|
76 |
+
api.upload_folder(
|
77 |
+
folder_path="/path/to/your/model/directory",
|
78 |
+
repo_id=repo_id,
|
79 |
+
repo_type="model"
|
80 |
+
)
|
81 |
+
```
|
82 |
+
|
83 |
+
## Important Notes
|
84 |
+
|
85 |
+
1. **Replace placeholders**: Before uploading, make sure to replace `YOUR_USERNAME` in the README.md and example files with your actual Hugging Face username.
|
86 |
+
|
87 |
+
2. **Model card**: The README.md serves as your model card. Make sure it's complete and accurate.
|
88 |
+
|
89 |
+
3. **File size**: Large files (>10MB) are automatically handled by Git LFS, which is already configured in .gitattributes.
|
90 |
+
|
91 |
+
4. **Testing**: After upload, test your model:
|
92 |
+
|
93 |
+
```python
|
94 |
+
from transformers import pipeline
|
95 |
+
classifier = pipeline("zero-shot-classification", model="YOUR_USERNAME/zero-shot-classification")
|
96 |
+
```
|
97 |
+
|
98 |
+
## Making Your Model Discoverable
|
99 |
+
|
100 |
+
1. Add relevant tags in your README.md frontmatter
|
101 |
+
2. Add a good description
|
102 |
+
3. Include example usage
|
103 |
+
4. Consider adding a model card with performance metrics
|
104 |
+
|
105 |
+
## Troubleshooting
|
106 |
+
|
107 |
+
- **Authentication errors**: Make sure your token has write permissions
|
108 |
+
- **Large file errors**: Ensure Git LFS is properly configured
|
109 |
+
- **Model loading errors**: Check that all required files are present (config.json, model files, tokenizer files)
|
110 |
+
|
111 |
+
After successful upload, your model will be available at:
|
112 |
+
`https://huggingface.co/YOUR_USERNAME/zero-shot-classification`
|
example_usage.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Example script demonstrating how to use the XLM-RoBERTa Zero-Shot Classification model.
|
4 |
+
This script shows various use cases including multilingual classification.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from transformers import pipeline
|
9 |
+
|
10 |
+
|
11 |
+
def main():
|
12 |
+
print("Loading XLM-RoBERTa Zero-Shot Classification model...")
|
13 |
+
|
14 |
+
# Initialize the zero-shot classification pipeline
|
15 |
+
# Replace 'YOUR_USERNAME/zero-shot-classification' with your actual model path
|
16 |
+
classifier = pipeline(
|
17 |
+
"zero-shot-classification",
|
18 |
+
model="YOUR_USERNAME/zero-shot-classification",
|
19 |
+
device=0 if torch.cuda.is_available() else -1, # Use GPU if available
|
20 |
+
)
|
21 |
+
|
22 |
+
print("Model loaded successfully!\n")
|
23 |
+
|
24 |
+
# Example 1: English sentiment analysis
|
25 |
+
print("Example 1: English Sentiment Analysis")
|
26 |
+
text_en = "I love this new smartphone, it's absolutely amazing!"
|
27 |
+
labels_en = ["positive", "negative", "neutral"]
|
28 |
+
|
29 |
+
result = classifier(text_en, labels_en)
|
30 |
+
print(f"Text: {text_en}")
|
31 |
+
print(f"Predicted label: {result['labels'][0]} (score: {result['scores'][0]:.4f})")
|
32 |
+
print()
|
33 |
+
|
34 |
+
# Example 2: Multilingual topic classification
|
35 |
+
print("Example 2: Multilingual Topic Classification")
|
36 |
+
texts = [
|
37 |
+
(
|
38 |
+
"English",
|
39 |
+
"The government announced new economic policies today.",
|
40 |
+
["politics", "sports", "technology", "entertainment"],
|
41 |
+
),
|
42 |
+
(
|
43 |
+
"Spanish",
|
44 |
+
"El nuevo iPhone tiene características increíbles.",
|
45 |
+
["tecnología", "deportes", "política", "entretenimiento"],
|
46 |
+
),
|
47 |
+
(
|
48 |
+
"French",
|
49 |
+
"Le match de football était très excitant hier soir.",
|
50 |
+
["sport", "politique", "technologie", "divertissement"],
|
51 |
+
),
|
52 |
+
(
|
53 |
+
"German",
|
54 |
+
"Die neue KI-Technologie wird die Zukunft verändern.",
|
55 |
+
["Technologie", "Sport", "Politik", "Unterhaltung"],
|
56 |
+
),
|
57 |
+
]
|
58 |
+
|
59 |
+
for language, text, labels in texts:
|
60 |
+
result = classifier(text, labels)
|
61 |
+
print(f"{language}: {text}")
|
62 |
+
print(f"Predicted: {result['labels'][0]} (score: {result['scores'][0]:.4f})")
|
63 |
+
print()
|
64 |
+
|
65 |
+
# Example 3: Multi-label classification
|
66 |
+
print("Example 3: Multi-label Classification")
|
67 |
+
text_multi = "This movie has great action scenes and amazing special effects, but the story is quite boring."
|
68 |
+
labels_multi = ["action", "drama", "comedy", "boring", "exciting", "visual effects"]
|
69 |
+
|
70 |
+
result = classifier(text_multi, labels_multi, multi_label=True)
|
71 |
+
print(f"Text: {text_multi}")
|
72 |
+
print("All predictions:")
|
73 |
+
for label, score in zip(result["labels"], result["scores"]):
|
74 |
+
print(f" {label}: {score:.4f}")
|
75 |
+
print()
|
76 |
+
|
77 |
+
# Example 4: Custom hypothesis template
|
78 |
+
print("Example 4: Custom Hypothesis Template (Spanish)")
|
79 |
+
text_es = "Esta película es realmente fantástica y emocionante."
|
80 |
+
labels_es = ["positivo", "negativo", "neutro"]
|
81 |
+
hypothesis_template = "Este texto es {}."
|
82 |
+
|
83 |
+
result = classifier(text_es, labels_es, hypothesis_template=hypothesis_template)
|
84 |
+
print(f"Text: {text_es}")
|
85 |
+
print(f"Predicted: {result['labels'][0]} (score: {result['scores'][0]:.4f})")
|
86 |
+
print(f"Using custom template: '{hypothesis_template}'")
|
87 |
+
print()
|
88 |
+
|
89 |
+
print(
|
90 |
+
"Demo completed! You can now use this model for your own zero-shot classification tasks."
|
91 |
+
)
|
92 |
+
|
93 |
+
|
94 |
+
if __name__ == "__main__":
|
95 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=1.9.0
|
2 |
+
transformers>=4.21.0
|
3 |
+
tokenizers>=0.13.0
|
4 |
+
numpy>=1.21.0
|
tokenizer_config.json
CHANGED
@@ -1 +1,17 @@
|
|
1 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_max_length": 512,
|
3 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
4 |
+
"do_lower_case": false,
|
5 |
+
"bos_token": "<s>",
|
6 |
+
"eos_token": "</s>",
|
7 |
+
"sep_token": "</s>",
|
8 |
+
"cls_token": "<s>",
|
9 |
+
"unk_token": "<unk>",
|
10 |
+
"pad_token": "<pad>",
|
11 |
+
"mask_token": "<mask>",
|
12 |
+
"special_tokens_map_file": null,
|
13 |
+
"name_or_path": "xlm-roberta-large",
|
14 |
+
"tokenize_chinese_chars": true,
|
15 |
+
"strip_accents": null,
|
16 |
+
"do_basic_tokenize": true
|
17 |
+
}
|