SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2

This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

This model was trained within the context of a larger system for ABSA, which looks like so:

  1. Use a spaCy model to select possible aspect span candidates.
  2. Use this SetFit model to filter these possible aspect span candidates.
  3. Use a SetFit model to classify the filtered aspect span candidates.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
aspect
  • 'focus:good starter, easy use, auto focus excellent'
  • 'zoom:zoom works very well.'
  • 'focus:auto focus is great and take superb close ups.'
no aspect
  • 'starter:good starter, easy use, auto focus excellent'
  • 'use:good starter, easy use, auto focus excellent'
  • 'lenses:i love that they are tac sharp lenses, can accept more lenses than the standard'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import AbsaModel

# Download from the ๐Ÿค— Hub
model = AbsaModel.from_pretrained(
    "najwaa/absa-digital_cameras-aspect",
    "najwaa/absa-digital_cameras-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 12.0459 28
Label Training Sample Count
no aspect 124
aspect 94

Training Hyperparameters

  • batch_size: (128, 128)
  • num_epochs: (5, 5)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: True
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0052 1 0.3052 -
0.2618 50 0.2886 0.2599
0.5236 100 0.2516 0.2418
0.7853 150 0.2027 0.1755
1.0471 200 0.0529 0.2105
1.3089 250 0.0126 0.2108
1.5707 300 0.0094 0.2241
1.8325 350 0.0072 0.2235
2.0942 400 0.007 0.2270

Framework Versions

  • Python: 3.11.12
  • SetFit: 1.1.2
  • Sentence Transformers: 4.1.0
  • spaCy: 3.7.5
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
4
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for najwaa/absa-digital_cameras-aspect

Finetuned
(460)
this model