Whisper base Vi - Nam Phung
This model is a fine-tuned version of openai/whisper-base on the vlsp2020_vinai_100h dataset. It achieves the following results on the evaluation set:
- Loss: 0.3606
- Wer: 16.9148
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 15000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.7975 | 0.0886 | 250 | 0.7610 | 36.8155 |
0.6074 | 0.1772 | 500 | 0.6467 | 32.4870 |
0.5934 | 0.2658 | 750 | 0.5843 | 29.5521 |
0.5497 | 0.3544 | 1000 | 0.5450 | 26.5531 |
0.5559 | 0.4429 | 1250 | 0.5176 | 26.0146 |
0.4872 | 0.5315 | 1500 | 0.4967 | 25.8677 |
0.5001 | 0.6201 | 1750 | 0.4795 | 25.0705 |
0.4597 | 0.7087 | 2000 | 0.4644 | 24.5844 |
0.4507 | 0.7973 | 2250 | 0.4536 | 22.6308 |
0.4356 | 0.8859 | 2500 | 0.4412 | 22.1019 |
0.4589 | 0.9745 | 2750 | 0.4315 | 22.3294 |
0.3347 | 1.0631 | 3000 | 0.4250 | 21.2764 |
0.3318 | 1.1517 | 3250 | 0.4204 | 20.9716 |
0.3473 | 1.2403 | 3500 | 0.4134 | 20.9027 |
0.3358 | 1.3288 | 3750 | 0.4097 | 20.2717 |
0.3467 | 1.4174 | 4000 | 0.4034 | 20.3648 |
0.3325 | 1.5060 | 4250 | 0.3987 | 19.7828 |
0.3396 | 1.5946 | 4500 | 0.3938 | 20.0876 |
0.3429 | 1.6832 | 4750 | 0.3897 | 18.9360 |
0.3347 | 1.7718 | 5000 | 0.3852 | 19.5118 |
0.3318 | 1.8604 | 5250 | 0.3816 | 19.1070 |
0.3362 | 1.9490 | 5500 | 0.3765 | 19.3152 |
0.3083 | 2.0376 | 5750 | 0.3780 | 18.7174 |
0.2372 | 2.1262 | 6000 | 0.3779 | 18.7188 |
0.2534 | 2.2147 | 6250 | 0.3742 | 18.6181 |
0.271 | 2.3033 | 6500 | 0.3729 | 18.5588 |
0.2836 | 2.3919 | 6750 | 0.3718 | 18.3712 |
0.2648 | 2.4805 | 7000 | 0.3689 | 18.3843 |
0.2678 | 2.5691 | 7250 | 0.3665 | 17.6009 |
0.2714 | 2.6577 | 7500 | 0.3652 | 17.7202 |
0.2504 | 2.7463 | 7750 | 0.3640 | 17.9457 |
0.275 | 2.8349 | 8000 | 0.3631 | 17.7382 |
0.2538 | 2.9235 | 8250 | 0.3598 | 17.3451 |
0.1795 | 3.0120 | 8500 | 0.3612 | 17.2499 |
0.1879 | 3.1006 | 8750 | 0.3648 | 17.5003 |
0.1947 | 3.1892 | 9000 | 0.3627 | 17.2665 |
0.1968 | 3.2778 | 9250 | 0.3620 | 17.0700 |
0.1954 | 3.3664 | 9500 | 0.3621 | 17.1148 |
0.1921 | 3.4550 | 9750 | 0.3617 | 17.0251 |
0.2068 | 3.5436 | 10000 | 0.3601 | 17.2162 |
0.2115 | 3.6322 | 10250 | 0.3604 | 17.0293 |
0.2242 | 3.7208 | 10500 | 0.3591 | 16.8072 |
0.2015 | 3.8094 | 10750 | 0.3574 | 17.0858 |
0.2261 | 3.8979 | 11000 | 0.3573 | 16.7017 |
0.2129 | 3.9865 | 11250 | 0.3556 | 17.1631 |
0.1739 | 4.0751 | 11500 | 0.3603 | 16.8362 |
0.1532 | 4.1637 | 11750 | 0.3603 | 16.8603 |
0.1408 | 4.2523 | 12000 | 0.3613 | 16.8631 |
0.1743 | 4.3409 | 12250 | 0.3604 | 16.8196 |
0.1832 | 4.4295 | 12500 | 0.3613 | 16.9534 |
0.1688 | 4.5181 | 12750 | 0.3609 | 17.0279 |
0.1767 | 4.6067 | 13000 | 0.3595 | 17.1865 |
0.1589 | 4.6953 | 13250 | 0.3596 | 16.8824 |
0.1778 | 4.7838 | 13500 | 0.3591 | 16.8376 |
0.1806 | 4.8724 | 13750 | 0.3590 | 16.8714 |
0.1551 | 4.9610 | 14000 | 0.3591 | 16.8231 |
0.163 | 5.0496 | 14250 | 0.3598 | 16.9541 |
0.1365 | 5.1382 | 14500 | 0.3604 | 16.8079 |
0.1563 | 5.2268 | 14750 | 0.3606 | 16.9176 |
0.1429 | 5.3154 | 15000 | 0.3606 | 16.9148 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 24
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for namph204/whisper-base-vi
Base model
openai/whisper-base