Edit model card

SetFit with BAAI/bge-small-en-v1.5

This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
Generalreply
  • 'Can you recommend a good movie to watch?'
  • "Oh, that's a tough one! There are so many good memories to choose from. But if I had to pick just one, I think it would be spending summers at my grandparent's house. We would play board games, make homemade ice cream, and have big family dinners. It was always so much fun!"
  • 'Oh, I love reading books! My favorite genre is definitely fantasy. How about you? What kind of books do you like to read?'
Lookup_1
  • 'Get me data_asset_kpi_cf cash flow.'
  • 'Display data_asset_001_pcc for electronics category.'
  • 'Calculate Gross Profit Margin Trends.'
Lookup
  • "What are the products in the 'Clothing' category?"
  • "Get me the phone numbers of customers with the last name 'Johnson'."
  • "Can you filter by employees who have the last name 'Brown'?"
Aggregation
  • 'Get me max Accumulated Amortisation and Impairment.'
  • 'Can I have mode of Revenue'
  • 'Show me count company_name'
Tablejoin
  • 'Could you merge the Orders and Employees tables to identify which employees have processed high-value orders?'
  • 'Could you connect the Products and Orders tables to analyze sales data by product category?'
  • 'How can I connect the Customers and Orders tables to find customers who made purchases during a specific promotion?'
Viewtables
  • 'What are the tables in the starhub_data_asset database that a user can join to perform a sales analysis?'
  • 'What tables can be found in the asset-tracking section of the starhub_data_asset database?'
  • 'What tables exist in the starhub_data_asset database?'
Rejection
  • "Let's avoid creating any new data sets."
  • "I'd prefer to avoid generating data fields."
  • "I'm not interested in filtering this collection."

Evaluation

Metrics

Label Accuracy
all 0.9915

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("nazhan/bge-small-en-v1.5-brahmaputra-iter-10")
# Run inference
preds = model("Can I have avg Cost_Efficiency")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 8.6563 62
Label Training Sample Count
Tablejoin 129
Rejection 77
Aggregation 282
Lookup 60
Generalreply 63
Viewtables 74
Lookup_1 150

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0000 1 0.2038 -
0.0014 50 0.2019 -
0.0029 100 0.1983 -
0.0043 150 0.206 -
0.0057 200 0.2268 -
0.0071 250 0.2025 -
0.0086 300 0.2041 -
0.0100 350 0.1426 -
0.0114 400 0.1513 -
0.0129 450 0.1215 -
0.0143 500 0.1426 -
0.0157 550 0.0859 -
0.0172 600 0.0486 -
0.0186 650 0.0378 -
0.0200 700 0.0519 -
0.0214 750 0.0717 -
0.0229 800 0.1161 -
0.0243 850 0.0771 -
0.0257 900 0.074 -
0.0272 950 0.0567 -
0.0286 1000 0.0223 -
0.0300 1050 0.0266 -
0.0315 1100 0.0261 -
0.0329 1150 0.0333 -
0.0343 1200 0.0107 -
0.0357 1250 0.0123 -
0.0372 1300 0.0193 -
0.0386 1350 0.0039 -
0.0400 1400 0.0079 -
0.0415 1450 0.0035 -
0.0429 1500 0.003 -
0.0443 1550 0.0041 -
0.0457 1600 0.0038 -
0.0472 1650 0.002 -
0.0486 1700 0.0028 -
0.0500 1750 0.0056 -
0.0515 1800 0.0035 -
0.0529 1850 0.0027 -
0.0543 1900 0.0028 -
0.0558 1950 0.0028 -
0.0572 2000 0.0019 -
0.0586 2050 0.0046 -
0.0600 2100 0.0017 -
0.0615 2150 0.0016 -
0.0629 2200 0.0022 -
0.0643 2250 0.002 -
0.0658 2300 0.0029 -
0.0672 2350 0.0032 -
0.0686 2400 0.0018 -
0.0701 2450 0.0015 -
0.0715 2500 0.0015 -
0.0729 2550 0.0016 -
0.0743 2600 0.0012 -
0.0758 2650 0.0014 -
0.0772 2700 0.0015 -
0.0786 2750 0.0018 -
0.0801 2800 0.0012 -
0.0815 2850 0.0009 -
0.0829 2900 0.001 -
0.0843 2950 0.0011 -
0.0858 3000 0.0011 -
0.0872 3050 0.001 -
0.0886 3100 0.0012 -
0.0901 3150 0.0006 -
0.0915 3200 0.0013 -
0.0929 3250 0.0007 -
0.0944 3300 0.0007 -
0.0958 3350 0.0009 -
0.0972 3400 0.0008 -
0.0986 3450 0.0005 -
0.1001 3500 0.001 -
0.1015 3550 0.001 -
0.1029 3600 0.0008 -
0.1044 3650 0.0007 -
0.1058 3700 0.0006 -
0.1072 3750 0.0009 -
0.1086 3800 0.0012 -
0.1101 3850 0.0007 -
0.1115 3900 0.0008 -
0.1129 3950 0.0009 -
0.1144 4000 0.0007 -
0.1158 4050 0.0007 -
0.1172 4100 0.0007 -
0.1187 4150 0.0006 -
0.1201 4200 0.0006 -
0.1215 4250 0.0011 -
0.1229 4300 0.0012 -
0.1244 4350 0.0007 -
0.1258 4400 0.0007 -
0.1272 4450 0.0006 -
0.1287 4500 0.0005 -
0.1301 4550 0.0008 -
0.1315 4600 0.0006 -
0.1330 4650 0.0007 -
0.1344 4700 0.0006 -
0.1358 4750 0.0005 -
0.1372 4800 0.0006 -
0.1387 4850 0.0008 -
0.1401 4900 0.0008 -
0.1415 4950 0.0004 -
0.1430 5000 0.0005 -
0.1444 5050 0.0005 -
0.1458 5100 0.0007 -
0.1472 5150 0.0006 -
0.1487 5200 0.0006 -
0.1501 5250 0.0004 -
0.1515 5300 0.0005 -
0.1530 5350 0.0007 -
0.1544 5400 0.0007 -
0.1558 5450 0.0005 -
0.1573 5500 0.0007 -
0.1587 5550 0.0004 -
0.1601 5600 0.0004 -
0.1615 5650 0.0006 -
0.1630 5700 0.0005 -
0.1644 5750 0.0006 -
0.1658 5800 0.0004 -
0.1673 5850 0.0005 -
0.1687 5900 0.0007 -
0.1701 5950 0.0005 -
0.1716 6000 0.0005 -
0.1730 6050 0.0003 -
0.1744 6100 0.0003 -
0.1758 6150 0.0005 -
0.1773 6200 0.0007 -
0.1787 6250 0.0004 -
0.1801 6300 0.0006 -
0.1816 6350 0.0004 -
0.1830 6400 0.0003 -
0.1844 6450 0.0005 -
0.1858 6500 0.0004 -
0.1873 6550 0.0006 -
0.1887 6600 0.0005 -
0.1901 6650 0.0005 -
0.1916 6700 0.0003 -
0.1930 6750 0.0004 -
0.1944 6800 0.0004 -
0.1959 6850 0.0004 -
0.1973 6900 0.0003 -
0.1987 6950 0.0004 -
0.2001 7000 0.0004 -
0.2016 7050 0.0003 -
0.2030 7100 0.0003 -
0.2044 7150 0.0005 -
0.2059 7200 0.0004 -
0.2073 7250 0.0003 -
0.2087 7300 0.0002 -
0.2102 7350 0.0003 -
0.2116 7400 0.0004 -
0.2130 7450 0.0006 -
0.2144 7500 0.0003 -
0.2159 7550 0.0002 -
0.2173 7600 0.0004 -
0.2187 7650 0.0003 -
0.2202 7700 0.0005 -
0.2216 7750 0.0004 -
0.2230 7800 0.0004 -
0.2244 7850 0.0004 -
0.2259 7900 0.0003 -
0.2273 7950 0.0005 -
0.2287 8000 0.0003 -
0.2302 8050 0.0003 -
0.2316 8100 0.0003 -
0.2330 8150 0.0002 -
0.2345 8200 0.0002 -
0.2359 8250 0.0004 -
0.2373 8300 0.0004 -
0.2387 8350 0.0004 -
0.2402 8400 0.0003 -
0.2416 8450 0.0002 -
0.2430 8500 0.0002 -
0.2445 8550 0.0003 -
0.2459 8600 0.0004 -
0.2473 8650 0.0004 -
0.2487 8700 0.0003 -
0.2502 8750 0.0002 -
0.2516 8800 0.0003 -
0.2530 8850 0.0003 -
0.2545 8900 0.0004 -
0.2559 8950 0.0003 -
0.2573 9000 0.0002 -
0.2588 9050 0.0003 -
0.2602 9100 0.0003 -
0.2616 9150 0.0003 -
0.2630 9200 0.0003 -
0.2645 9250 0.0002 -
0.2659 9300 0.0002 -
0.2673 9350 0.0003 -
0.2688 9400 0.0552 -
0.2702 9450 0.0003 -
0.2716 9500 0.0003 -
0.2731 9550 0.0004 -
0.2745 9600 0.0004 -
0.2759 9650 0.0005 -
0.2773 9700 0.0003 -
0.2788 9750 0.0003 -
0.2802 9800 0.0003 -
0.2816 9850 0.0003 -
0.2831 9900 0.0004 -
0.2845 9950 0.0003 -
0.2859 10000 0.0003 -
0.2873 10050 0.0004 -
0.2888 10100 0.0005 -
0.2902 10150 0.0003 -
0.2916 10200 0.0004 -
0.2931 10250 0.0002 -
0.2945 10300 0.0005 -
0.2959 10350 0.0003 -
0.2974 10400 0.0003 -
0.2988 10450 0.0002 -
0.3002 10500 0.0003 -
0.3016 10550 0.0004 -
0.3031 10600 0.0003 -
0.3045 10650 0.0003 -
0.3059 10700 0.0004 -
0.3074 10750 0.0003 -
0.3088 10800 0.0003 -
0.3102 10850 0.0003 -
0.3117 10900 0.0002 -
0.3131 10950 0.0005 -
0.3145 11000 0.0003 -
0.3159 11050 0.0002 -
0.3174 11100 0.0003 -
0.3188 11150 0.0004 -
0.3202 11200 0.0004 -
0.3217 11250 0.0002 -
0.3231 11300 0.0003 -
0.3245 11350 0.0003 -
0.3259 11400 0.0003 -
0.3274 11450 0.0004 -
0.3288 11500 0.0004 -
0.3302 11550 0.0003 -
0.3317 11600 0.0003 -
0.3331 11650 0.0002 -
0.3345 11700 0.0004 -
0.3360 11750 0.0002 -
0.3374 11800 0.0003 -
0.3388 11850 0.0002 -
0.3402 11900 0.0003 -
0.3417 11950 0.0002 -
0.3431 12000 0.0004 -
0.3445 12050 0.0003 -
0.3460 12100 0.0004 -
0.3474 12150 0.0005 -
0.3488 12200 0.0004 -
0.3503 12250 0.0004 -
0.3517 12300 0.0002 -
0.3531 12350 0.0002 -
0.3545 12400 0.0004 -
0.3560 12450 0.0002 -
0.3574 12500 0.0002 -
0.3588 12550 0.0003 -
0.3603 12600 0.0005 -
0.3617 12650 0.0003 -
0.3631 12700 0.0003 -
0.3645 12750 0.0002 -
0.3660 12800 0.0003 -
0.3674 12850 0.0002 -
0.3688 12900 0.0002 -
0.3703 12950 0.0001 -
0.3717 13000 0.0002 -
0.3731 13050 0.0003 -
0.3746 13100 0.0003 -
0.3760 13150 0.0002 -
0.3774 13200 0.0004 -
0.3788 13250 0.0003 -
0.3803 13300 0.0002 -
0.3817 13350 0.0003 -
0.3831 13400 0.0003 -
0.3846 13450 0.0003 -
0.3860 13500 0.0002 -
0.3874 13550 0.0002 -
0.3888 13600 0.0003 -
0.3903 13650 0.0003 -
0.3917 13700 0.0002 -
0.3931 13750 0.0002 -
0.3946 13800 0.0002 -
0.3960 13850 0.0004 -
0.3974 13900 0.0003 -
0.3989 13950 0.0002 -
0.4003 14000 0.0003 -
0.4017 14050 0.0001 -
0.4031 14100 0.0002 -
0.4046 14150 0.0001 -
0.4060 14200 0.0002 -
0.4074 14250 0.0002 -
0.4089 14300 0.0002 -
0.4103 14350 0.0003 -
0.4117 14400 0.0003 -
0.4132 14450 0.0002 -
0.4146 14500 0.0003 -
0.4160 14550 0.0003 -
0.4174 14600 0.0002 -
0.4189 14650 0.0002 -
0.4203 14700 0.0003 -
0.4217 14750 0.0003 -
0.4232 14800 0.0002 -
0.4246 14850 0.0003 -
0.4260 14900 0.0003 -
0.4274 14950 0.0003 -
0.4289 15000 0.0002 -
0.4303 15050 0.0002 -
0.4317 15100 0.0002 -
0.4332 15150 0.0004 -
0.4346 15200 0.0003 -
0.4360 15250 0.0001 -
0.4375 15300 0.0002 -
0.4389 15350 0.0001 -
0.4403 15400 0.0002 -
0.4417 15450 0.0001 -
0.4432 15500 0.0002 -
0.4446 15550 0.0002 -
0.4460 15600 0.0002 -
0.4475 15650 0.0002 -
0.4489 15700 0.0003 -
0.4503 15750 0.0002 -
0.4518 15800 0.0002 -
0.4532 15850 0.0003 -
0.4546 15900 0.0003 -
0.4560 15950 0.0002 -
0.4575 16000 0.0002 -
0.4589 16050 0.0002 -
0.4603 16100 0.0003 -
0.4618 16150 0.0002 -
0.4632 16200 0.0003 -
0.4646 16250 0.0002 -
0.4660 16300 0.0002 -
0.4675 16350 0.0002 -
0.4689 16400 0.0002 -
0.4703 16450 0.0002 -
0.4718 16500 0.0002 -
0.4732 16550 0.0002 -
0.4746 16600 0.0003 -
0.4761 16650 0.0002 -
0.4775 16700 0.0002 -
0.4789 16750 0.0002 -
0.4803 16800 0.0002 -
0.4818 16850 0.0001 -
0.4832 16900 0.0003 -
0.4846 16950 0.0002 -
0.4861 17000 0.0002 -
0.4875 17050 0.0002 -
0.4889 17100 0.0002 -
0.4904 17150 0.0002 -
0.4918 17200 0.0002 -
0.4932 17250 0.0002 -
0.4946 17300 0.0002 -
0.4961 17350 0.0002 -
0.4975 17400 0.0002 -
0.4989 17450 0.0001 -
0.5004 17500 0.0001 -
0.5018 17550 0.0002 -
0.5032 17600 0.0002 -
0.5046 17650 0.0002 -
0.5061 17700 0.0002 -
0.5075 17750 0.0002 -
0.5089 17800 0.0002 -
0.5104 17850 0.0002 -
0.5118 17900 0.0002 -
0.5132 17950 0.0003 -
0.5147 18000 0.0002 -
0.5161 18050 0.0002 -
0.5175 18100 0.0002 -
0.5189 18150 0.0002 -
0.5204 18200 0.0002 -
0.5218 18250 0.0002 -
0.5232 18300 0.0002 -
0.5247 18350 0.0002 -
0.5261 18400 0.0002 -
0.5275 18450 0.0003 -
0.5289 18500 0.0001 -
0.5304 18550 0.0002 -
0.5318 18600 0.0001 -
0.5332 18650 0.0002 -
0.5347 18700 0.0002 -
0.5361 18750 0.0002 -
0.5375 18800 0.0002 -
0.5390 18850 0.0001 -
0.5404 18900 0.0001 -
0.5418 18950 0.0001 -
0.5432 19000 0.0002 -
0.5447 19050 0.0002 -
0.5461 19100 0.0002 -
0.5475 19150 0.0002 -
0.5490 19200 0.0002 -
0.5504 19250 0.0002 -
0.5518 19300 0.0001 -
0.5533 19350 0.0002 -
0.5547 19400 0.0002 -
0.5561 19450 0.0004 -
0.5575 19500 0.0002 -
0.5590 19550 0.0002 -
0.5604 19600 0.0003 -
0.5618 19650 0.0003 -
0.5633 19700 0.0002 -
0.5647 19750 0.0002 -
0.5661 19800 0.0001 -
0.5675 19850 0.0003 -
0.5690 19900 0.0002 -
0.5704 19950 0.0002 -
0.5718 20000 0.0001 -
0.5733 20050 0.0003 -
0.5747 20100 0.0001 -
0.5761 20150 0.0002 -
0.5776 20200 0.0003 -
0.5790 20250 0.0003 -
0.5804 20300 0.0002 -
0.5818 20350 0.0003 -
0.5833 20400 0.0002 -
0.5847 20450 0.0002 -
0.5861 20500 0.0002 -
0.5876 20550 0.0001 -
0.5890 20600 0.0002 -
0.5904 20650 0.0002 -
0.5919 20700 0.0002 -
0.5933 20750 0.0002 -
0.5947 20800 0.0001 -
0.5961 20850 0.0001 -
0.5976 20900 0.0001 -
0.5990 20950 0.0001 -
0.6004 21000 0.0002 -
0.6019 21050 0.0001 -
0.6033 21100 0.0002 -
0.6047 21150 0.0001 -
0.6061 21200 0.0002 -
0.6076 21250 0.0002 -
0.6090 21300 0.0001 -
0.6104 21350 0.0002 -
0.6119 21400 0.0001 -
0.6133 21450 0.0002 -
0.6147 21500 0.0001 -
0.6162 21550 0.0002 -
0.6176 21600 0.0001 -
0.6190 21650 0.0001 -
0.6204 21700 0.0001 -
0.6219 21750 0.0002 -
0.6233 21800 0.0001 -
0.6247 21850 0.0001 -
0.6262 21900 0.0001 -
0.6276 21950 0.0002 -
0.6290 22000 0.0002 -
0.6305 22050 0.0001 -
0.6319 22100 0.0002 -
0.6333 22150 0.0001 -
0.6347 22200 0.0001 -
0.6362 22250 0.0001 -
0.6376 22300 0.0002 -
0.6390 22350 0.0001 -
0.6405 22400 0.0003 -
0.6419 22450 0.0002 -
0.6433 22500 0.0002 -
0.6447 22550 0.0001 -
0.6462 22600 0.0002 -
0.6476 22650 0.0002 -
0.6490 22700 0.0002 -
0.6505 22750 0.0002 -
0.6519 22800 0.0001 -
0.6533 22850 0.0002 -
0.6548 22900 0.0002 -
0.6562 22950 0.0002 -
0.6576 23000 0.0002 -
0.6590 23050 0.0002 -
0.6605 23100 0.0002 -
0.6619 23150 0.0002 -
0.6633 23200 0.0002 -
0.6648 23250 0.0002 -
0.6662 23300 0.0002 -
0.6676 23350 0.0001 -
0.6690 23400 0.0002 -
0.6705 23450 0.0002 -
0.6719 23500 0.0001 -
0.6733 23550 0.0002 -
0.6748 23600 0.0001 -
0.6762 23650 0.0002 -
0.6776 23700 0.0002 -
0.6791 23750 0.0002 -
0.6805 23800 0.0001 -
0.6819 23850 0.0002 -
0.6833 23900 0.0003 -
0.6848 23950 0.0002 -
0.6862 24000 0.0002 -
0.6876 24050 0.0001 -
0.6891 24100 0.0002 -
0.6905 24150 0.0001 -
0.6919 24200 0.0003 -
0.6934 24250 0.0002 -
0.6948 24300 0.0001 -
0.6962 24350 0.0001 -
0.6976 24400 0.0001 -
0.6991 24450 0.0001 -
0.7005 24500 0.0001 -
0.7019 24550 0.0002 -
0.7034 24600 0.0001 -
0.7048 24650 0.0002 -
0.7062 24700 0.0001 -
0.7076 24750 0.0002 -
0.7091 24800 0.0002 -
0.7105 24850 0.0002 -
0.7119 24900 0.0002 -
0.7134 24950 0.0001 -
0.7148 25000 0.0002 -
0.7162 25050 0.0001 -
0.7177 25100 0.0002 -
0.7191 25150 0.0001 -
0.7205 25200 0.0001 -
0.7219 25250 0.0002 -
0.7234 25300 0.0002 -
0.7248 25350 0.0002 -
0.7262 25400 0.0001 -
0.7277 25450 0.0002 -
0.7291 25500 0.0002 -
0.7305 25550 0.0002 -
0.7320 25600 0.0001 -
0.7334 25650 0.0002 -
0.7348 25700 0.0002 -
0.7362 25750 0.0002 -
0.7377 25800 0.0002 -
0.7391 25850 0.0001 -
0.7405 25900 0.0002 -
0.7420 25950 0.0002 -
0.7434 26000 0.0001 -
0.7448 26050 0.0001 -
0.7462 26100 0.0001 -
0.7477 26150 0.0001 -
0.7491 26200 0.0001 -
0.7505 26250 0.0002 -
0.7520 26300 0.0001 -
0.7534 26350 0.0001 -
0.7548 26400 0.0001 -
0.7563 26450 0.0002 -
0.7577 26500 0.0001 -
0.7591 26550 0.0002 -
0.7605 26600 0.0003 -
0.7620 26650 0.0002 -
0.7634 26700 0.0002 -
0.7648 26750 0.0001 -
0.7663 26800 0.0001 -
0.7677 26850 0.0002 -
0.7691 26900 0.0002 -
0.7706 26950 0.0001 -
0.7720 27000 0.0001 -
0.7734 27050 0.0001 -
0.7748 27100 0.0001 -
0.7763 27150 0.0001 -
0.7777 27200 0.0002 -
0.7791 27250 0.0001 -
0.7806 27300 0.0001 -
0.7820 27350 0.0001 -
0.7834 27400 0.0002 -
0.7848 27450 0.0001 -
0.7863 27500 0.0001 -
0.7877 27550 0.0001 -
0.7891 27600 0.0001 -
0.7906 27650 0.0001 -
0.7920 27700 0.0001 -
0.7934 27750 0.0001 -
0.7949 27800 0.0001 -
0.7963 27850 0.0001 -
0.7977 27900 0.0001 -
0.7991 27950 0.0003 -
0.8006 28000 0.0001 -
0.8020 28050 0.0002 -
0.8034 28100 0.0001 -
0.8049 28150 0.0002 -
0.8063 28200 0.0 -
0.8077 28250 0.0001 -
0.8091 28300 0.0001 -
0.8106 28350 0.0001 -
0.8120 28400 0.0001 -
0.8134 28450 0.0002 -
0.8149 28500 0.0001 -
0.8163 28550 0.0001 -
0.8177 28600 0.0001 -
0.8192 28650 0.0001 -
0.8206 28700 0.0001 -
0.8220 28750 0.0002 -
0.8234 28800 0.0002 -
0.8249 28850 0.0002 -
0.8263 28900 0.0001 -
0.8277 28950 0.0002 -
0.8292 29000 0.0001 -
0.8306 29050 0.0002 -
0.8320 29100 0.0001 -
0.8335 29150 0.0001 -
0.8349 29200 0.0001 -
0.8363 29250 0.0001 -
0.8377 29300 0.0001 -
0.8392 29350 0.0001 -
0.8406 29400 0.0001 -
0.8420 29450 0.0002 -
0.8435 29500 0.0001 -
0.8449 29550 0.0001 -
0.8463 29600 0.0001 -
0.8477 29650 0.0001 -
0.8492 29700 0.0001 -
0.8506 29750 0.0002 -
0.8520 29800 0.0002 -
0.8535 29850 0.0001 -
0.8549 29900 0.0002 -
0.8563 29950 0.0002 -
0.8578 30000 0.0002 -
0.8592 30050 0.0001 -
0.8606 30100 0.0002 -
0.8620 30150 0.0002 -
0.8635 30200 0.0003 -
0.8649 30250 0.0001 -
0.8663 30300 0.0001 -
0.8678 30350 0.0001 -
0.8692 30400 0.0001 -
0.8706 30450 0.0002 -
0.8721 30500 0.0001 -
0.8735 30550 0.0001 -
0.8749 30600 0.0001 -
0.8763 30650 0.0002 -
0.8778 30700 0.0002 -
0.8792 30750 0.0001 -
0.8806 30800 0.0002 -
0.8821 30850 0.0002 -
0.8835 30900 0.0001 -
0.8849 30950 0.0002 -
0.8863 31000 0.0002 -
0.8878 31050 0.0002 -
0.8892 31100 0.0001 -
0.8906 31150 0.0001 -
0.8921 31200 0.0001 -
0.8935 31250 0.0001 -
0.8949 31300 0.0002 -
0.8964 31350 0.0002 -
0.8978 31400 0.0001 -
0.8992 31450 0.0001 -
0.9006 31500 0.0002 -
0.9021 31550 0.0002 -
0.9035 31600 0.0001 -
0.9049 31650 0.0002 -
0.9064 31700 0.0001 -
0.9078 31750 0.0001 -
0.9092 31800 0.0001 -
0.9107 31850 0.0002 -
0.9121 31900 0.0002 -
0.9135 31950 0.0001 -
0.9149 32000 0.0001 -
0.9164 32050 0.0001 -
0.9178 32100 0.0001 -
0.9192 32150 0.0001 -
0.9207 32200 0.0001 -
0.9221 32250 0.0001 -
0.9235 32300 0.0002 -
0.9249 32350 0.0001 -
0.9264 32400 0.0001 -
0.9278 32450 0.0002 -
0.9292 32500 0.0001 -
0.9307 32550 0.0001 -
0.9321 32600 0.0002 -
0.9335 32650 0.0001 -
0.9350 32700 0.0001 -
0.9364 32750 0.0001 -
0.9378 32800 0.0001 -
0.9392 32850 0.0001 -
0.9407 32900 0.0002 -
0.9421 32950 0.0002 -
0.9435 33000 0.0 -
0.9450 33050 0.0001 -
0.9464 33100 0.0001 -
0.9478 33150 0.0001 -
0.9492 33200 0.0001 -
0.9507 33250 0.0001 -
0.9521 33300 0.0001 -
0.9535 33350 0.0002 -
0.9550 33400 0.0001 -
0.9564 33450 0.0001 -
0.9578 33500 0.0002 -
0.9593 33550 0.0001 -
0.9607 33600 0.0001 -
0.9621 33650 0.0002 -
0.9635 33700 0.0002 -
0.9650 33750 0.0001 -
0.9664 33800 0.0001 -
0.9678 33850 0.0001 -
0.9693 33900 0.0001 -
0.9707 33950 0.0 -
0.9721 34000 0.0002 -
0.9736 34050 0.0001 -
0.9750 34100 0.0001 -
0.9764 34150 0.0001 -
0.9778 34200 0.0001 -
0.9793 34250 0.0002 -
0.9807 34300 0.0002 -
0.9821 34350 0.0001 -
0.9836 34400 0.0001 -
0.9850 34450 0.0001 -
0.9864 34500 0.0001 -
0.9878 34550 0.0001 -
0.9893 34600 0.0001 -
0.9907 34650 0.0001 -
0.9921 34700 0.0001 -
0.9936 34750 0.0001 -
0.9950 34800 0.0001 -
0.9964 34850 0.0001 -
0.9979 34900 0.0002 -
0.9993 34950 0.0002 -
1.0 34975 - 0.0221
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.9
  • SetFit: 1.0.3
  • Sentence Transformers: 2.7.0
  • Transformers: 4.42.4
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
5
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nazhan/bge-small-en-v1.5-brahmaputra-iter-10

Finetuned
(107)
this model

Evaluation results