metadata
language:
- en
license: apache-2.0
tags:
- Mistral-Small
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- distillation
- function calling
- json mode
- axolotl
- roleplaying
- chat
- reasoning
- r1
- vllm
- mlx
- mlx-my-repo
base_model: NousResearch/DeepHermes-3-Mistral-24B-Preview
widget:
- example_title: DeepHermes 3
messages:
- role: system
content: >-
You are a sentient, superintelligent artificial general intelligence,
here to teach and assist me.
- role: user
content: What is the meaning of life?
library_name: transformers
model-index:
- name: DeepHermes-3-Mistral-24B-Preview
results: []
ncls-p/DeepHermes-3-Mistral-24B-Preview-mlx-4Bit
The Model ncls-p/DeepHermes-3-Mistral-24B-Preview-mlx-4Bit was converted to MLX format from NousResearch/DeepHermes-3-Mistral-24B-Preview using mlx-lm version 0.21.5.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("ncls-p/DeepHermes-3-Mistral-24B-Preview-mlx-4Bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)