Whisper base - Patois

This model is a fine-tuned version of openai/whisper-base on the Patois Music Transcription dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0740
  • Wer: 0.5879

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.3852 1.3746 400 1.3994 0.8946
0.9297 2.7491 800 1.1046 0.7298
0.5738 4.1237 1200 1.0175 0.6647
0.4621 5.4983 1600 0.9841 0.6448
0.3866 6.8729 2000 0.9733 0.5982
0.2647 8.2474 2400 0.9925 0.6296
0.2166 9.6220 2800 1.0156 0.6006
0.185 10.9966 3200 1.0366 0.5932
0.1521 12.3711 3600 1.0650 0.5983
0.1168 13.7457 4000 1.0740 0.5879

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
10
Safetensors
Model size
72.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for neddamj/whisper-base-patois

Finetuned
(507)
this model

Evaluation results