Upload ProkBertForMaskedLM
Browse files- config.json +7 -1
- generation_config.json +1 -1
- model.safetensors +3 -0
- models.py +295 -0
config.json
CHANGED
|
@@ -1,8 +1,14 @@
|
|
| 1 |
{
|
|
|
|
| 2 |
"architectures": [
|
| 3 |
"ProkBertForMaskedLM"
|
| 4 |
],
|
| 5 |
"attention_probs_dropout_prob": 0.1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
"hidden_act": "gelu",
|
| 7 |
"hidden_dropout_prob": 0.1,
|
| 8 |
"hidden_size": 384,
|
|
@@ -18,7 +24,7 @@
|
|
| 18 |
"position_embedding_type": "relative_key_query",
|
| 19 |
"shift": 1,
|
| 20 |
"torch_dtype": "float32",
|
| 21 |
-
"transformers_version": "4.
|
| 22 |
"type_vocab_size": 2,
|
| 23 |
"use_cache": true,
|
| 24 |
"vocab_size": 4101
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "/project/c_evolm/huggingface/prokbert-mini",
|
| 3 |
"architectures": [
|
| 4 |
"ProkBertForMaskedLM"
|
| 5 |
],
|
| 6 |
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "models.ProkBertConfig",
|
| 9 |
+
"AutoModelForMaskedLM": "models.ProkBertForMaskedLM"
|
| 10 |
+
},
|
| 11 |
+
"classification_dropout_rate": 0.1,
|
| 12 |
"hidden_act": "gelu",
|
| 13 |
"hidden_dropout_prob": 0.1,
|
| 14 |
"hidden_size": 384,
|
|
|
|
| 24 |
"position_embedding_type": "relative_key_query",
|
| 25 |
"shift": 1,
|
| 26 |
"torch_dtype": "float32",
|
| 27 |
+
"transformers_version": "4.48.0.dev0",
|
| 28 |
"type_vocab_size": 2,
|
| 29 |
"use_cache": true,
|
| 30 |
"vocab_size": 4101
|
generation_config.json
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
"_from_model_config": true,
|
| 3 |
"pad_token_id": 0,
|
| 4 |
-
"transformers_version": "4.
|
| 5 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"_from_model_config": true,
|
| 3 |
"pad_token_id": 0,
|
| 4 |
+
"transformers_version": "4.48.0.dev0"
|
| 5 |
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:19ede01f2ef0420e111c0be8879357fba23332fad88a27571bd8d9b3b04bca3b
|
| 3 |
+
size 82581348
|
models.py
ADDED
|
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
import warnings
|
| 3 |
+
import logging
|
| 4 |
+
from typing import Optional, Tuple, Union
|
| 5 |
+
import os
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from transformers import MegatronBertConfig, MegatronBertModel, MegatronBertForMaskedLM, MegatronBertPreTrainedModel, PreTrainedModel
|
| 10 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
| 11 |
+
from transformers.utils.hub import cached_file
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class BertForBinaryClassificationWithPooling(nn.Module):
|
| 15 |
+
"""
|
| 16 |
+
ProkBERT model for binary classification with custom pooling.
|
| 17 |
+
|
| 18 |
+
This model extends a pre-trained `MegatronBertModel` by adding a weighting layer
|
| 19 |
+
to compute a weighted sum over the sequence outputs, followed by a classifier.
|
| 20 |
+
|
| 21 |
+
Attributes:
|
| 22 |
+
base_model (MegatronBertModel): The base BERT model.
|
| 23 |
+
weighting_layer (nn.Linear): Linear layer to compute weights for each token.
|
| 24 |
+
dropout (nn.Dropout): Dropout layer.
|
| 25 |
+
classifier (nn.Linear): Linear layer for classification.
|
| 26 |
+
"""
|
| 27 |
+
def __init__(self, base_model: MegatronBertModel):
|
| 28 |
+
"""
|
| 29 |
+
Initialize the BertForBinaryClassificationWithPooling model.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
base_model (MegatronBertModel): A pre-trained `MegatronBertModel` instance.
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
super(BertForBinaryClassificationWithPooling, self).__init__()
|
| 36 |
+
self.base_model = base_model
|
| 37 |
+
self.base_model_config_dict = base_model.config.to_dict()
|
| 38 |
+
self.hidden_size = self.base_model_config_dict['hidden_size']
|
| 39 |
+
self.dropout_rate = self.base_model_config_dict['hidden_dropout_prob']
|
| 40 |
+
|
| 41 |
+
self.weighting_layer = nn.Linear(self.hidden_size, 1)
|
| 42 |
+
self.dropout = nn.Dropout(self.dropout_rate)
|
| 43 |
+
self.classifier = nn.Linear(self.hidden_size, 2)
|
| 44 |
+
|
| 45 |
+
def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=False, output_pooled_output=False):
|
| 46 |
+
# Modified call to base model to include output_hidden_states
|
| 47 |
+
outputs = self.base_model(input_ids, attention_mask=attention_mask, output_hidden_states=output_hidden_states)
|
| 48 |
+
sequence_output = outputs[0]
|
| 49 |
+
|
| 50 |
+
# Compute weights for each position in the sequence
|
| 51 |
+
weights = self.weighting_layer(sequence_output)
|
| 52 |
+
weights = torch.nn.functional.softmax(weights, dim=1)
|
| 53 |
+
|
| 54 |
+
# Compute weighted sum
|
| 55 |
+
pooled_output = torch.sum(weights * sequence_output, dim=1)
|
| 56 |
+
|
| 57 |
+
# Classification head
|
| 58 |
+
pooled_output = self.dropout(pooled_output)
|
| 59 |
+
logits = self.classifier(pooled_output)
|
| 60 |
+
|
| 61 |
+
# Prepare the output as a dictionary
|
| 62 |
+
output = {"logits": logits}
|
| 63 |
+
|
| 64 |
+
# Include hidden states in output if requested
|
| 65 |
+
if output_hidden_states:
|
| 66 |
+
output["hidden_states"] = outputs.hidden_states
|
| 67 |
+
if output_pooled_output:
|
| 68 |
+
output["pooled_output"] = pooled_output
|
| 69 |
+
|
| 70 |
+
# If labels are provided, compute the loss
|
| 71 |
+
if labels is not None:
|
| 72 |
+
loss_fct = torch.nn.CrossEntropyLoss()
|
| 73 |
+
loss = loss_fct(logits.view(-1, 2), labels.view(-1))
|
| 74 |
+
output["loss"] = loss
|
| 75 |
+
|
| 76 |
+
return output
|
| 77 |
+
|
| 78 |
+
def save_pretrained(self, save_directory):
|
| 79 |
+
"""
|
| 80 |
+
Save the model weights and configuration in a directory.
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
save_directory (str): Directory where the model and configuration can be saved.
|
| 84 |
+
"""
|
| 85 |
+
print('The save pretrained is called!')
|
| 86 |
+
if not os.path.exists(save_directory):
|
| 87 |
+
os.makedirs(save_directory)
|
| 88 |
+
|
| 89 |
+
model_path = os.path.join(save_directory, "pytorch_model.bin")
|
| 90 |
+
torch.save(self.state_dict(), model_path)
|
| 91 |
+
print(f'The save directory is: {save_directory}')
|
| 92 |
+
self.base_model.config.save_pretrained(save_directory)
|
| 93 |
+
|
| 94 |
+
@classmethod
|
| 95 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
| 96 |
+
"""
|
| 97 |
+
Load the model weights and configuration from a local directory or Hugging Face Hub.
|
| 98 |
+
|
| 99 |
+
Args:
|
| 100 |
+
pretrained_model_name_or_path (str): Directory path where the model and configuration were saved, or name of the model in Hugging Face Hub.
|
| 101 |
+
|
| 102 |
+
Returns:
|
| 103 |
+
model: Instance of BertForBinaryClassificationWithPooling.
|
| 104 |
+
"""
|
| 105 |
+
# Determine if the path is local or from Hugging Face Hub
|
| 106 |
+
if os.path.exists(pretrained_model_name_or_path):
|
| 107 |
+
# Path is local
|
| 108 |
+
if 'config' in kwargs:
|
| 109 |
+
print('Config is in the parameters')
|
| 110 |
+
config = kwargs['config']
|
| 111 |
+
|
| 112 |
+
else:
|
| 113 |
+
config = MegatronBertConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
| 114 |
+
base_model = MegatronBertModel(config=config)
|
| 115 |
+
model = cls(base_model=base_model)
|
| 116 |
+
model_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin")
|
| 117 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'), weights_only=True))
|
| 118 |
+
else:
|
| 119 |
+
# Path is from Hugging Face Hub
|
| 120 |
+
config = kwargs.pop('config', None)
|
| 121 |
+
if config is None:
|
| 122 |
+
config = MegatronBertConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
| 123 |
+
|
| 124 |
+
base_model = MegatronBertModel(config=config)
|
| 125 |
+
model = cls(base_model=base_model)
|
| 126 |
+
model_file = cached_file(pretrained_model_name_or_path, "pytorch_model.bin")
|
| 127 |
+
model.load_state_dict(torch.load(model_file, map_location=torch.device('cpu'), weights_only=True))
|
| 128 |
+
|
| 129 |
+
return model
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class OldProkBertConfig(MegatronBertConfig):
|
| 134 |
+
|
| 135 |
+
model_type = "prokbert"
|
| 136 |
+
def __init__(
|
| 137 |
+
self,
|
| 138 |
+
kmer: int = 6,
|
| 139 |
+
shift: int = 1,
|
| 140 |
+
**kwargs,
|
| 141 |
+
):
|
| 142 |
+
super().__init__(**kwargs)
|
| 143 |
+
self.kmer=kmer
|
| 144 |
+
self.shift=shift
|
| 145 |
+
|
| 146 |
+
class ProkBertConfig(MegatronBertConfig):
|
| 147 |
+
model_type = "prokbert"
|
| 148 |
+
|
| 149 |
+
def __init__(
|
| 150 |
+
self,
|
| 151 |
+
kmer: int = 6,
|
| 152 |
+
shift: int = 1,
|
| 153 |
+
num_labels: int = 2,
|
| 154 |
+
classification_dropout_rate: float = 0.1,
|
| 155 |
+
**kwargs,
|
| 156 |
+
):
|
| 157 |
+
super().__init__(**kwargs)
|
| 158 |
+
self.kmer = kmer
|
| 159 |
+
self.shift = shift
|
| 160 |
+
self.num_labels = num_labels
|
| 161 |
+
self.classification_dropout_rate = classification_dropout_rate
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
class ProkBertClassificationConfig(ProkBertConfig):
|
| 167 |
+
model_type = "prokbert"
|
| 168 |
+
def __init__(
|
| 169 |
+
self,
|
| 170 |
+
num_labels: int = 2,
|
| 171 |
+
classification_dropout_rate: float = 0.1,
|
| 172 |
+
**kwargs,
|
| 173 |
+
):
|
| 174 |
+
super().__init__(**kwargs)
|
| 175 |
+
# Ide j枚n majd n茅mi extra l茅p茅s, egyel艖re csak pr贸b谩lkozunk a sima configgal.
|
| 176 |
+
self.num_labels = num_labels
|
| 177 |
+
self.classification_dropout_rate = classification_dropout_rate
|
| 178 |
+
|
| 179 |
+
class ProkBertPreTrainedModel(PreTrainedModel):
|
| 180 |
+
"""
|
| 181 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 182 |
+
models.
|
| 183 |
+
"""
|
| 184 |
+
|
| 185 |
+
config_class = ProkBertConfig
|
| 186 |
+
base_model_prefix = "bert"
|
| 187 |
+
supports_gradient_checkpointing = True
|
| 188 |
+
|
| 189 |
+
def _init_weights(self, module):
|
| 190 |
+
"""Initialize the weights"""
|
| 191 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
| 192 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 193 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 194 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 195 |
+
elif isinstance(module, nn.LayerNorm):
|
| 196 |
+
module.bias.data.zero_()
|
| 197 |
+
module.weight.data.fill_(1.0)
|
| 198 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
| 199 |
+
module.bias.data.zero_()
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
class ProkBertModel(MegatronBertModel):
|
| 205 |
+
config_class = ProkBertConfig
|
| 206 |
+
|
| 207 |
+
def __init__(self, config: ProkBertConfig, **kwargs):
|
| 208 |
+
if not isinstance(config, ProkBertConfig):
|
| 209 |
+
raise ValueError(f"Expected `ProkBertConfig`, got {config.__class__.__module__}.{config.__class__.__name__}")
|
| 210 |
+
|
| 211 |
+
super().__init__(config, **kwargs)
|
| 212 |
+
self.config = config
|
| 213 |
+
# One should check if it is a prper prokbert config, if not crafting one.
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
class ProkBertForMaskedLM(MegatronBertForMaskedLM):
|
| 217 |
+
config_class = ProkBertConfig
|
| 218 |
+
|
| 219 |
+
def __init__(self, config: ProkBertConfig, **kwargs):
|
| 220 |
+
if not isinstance(config, ProkBertConfig):
|
| 221 |
+
raise ValueError(f"Expected `ProkBertConfig`, got {config.__class__.__module__}.{config.__class__.__name__}")
|
| 222 |
+
|
| 223 |
+
super().__init__(config, **kwargs)
|
| 224 |
+
self.config = config
|
| 225 |
+
# One should check if it is a prper prokbert config, if not crafting one.
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
class ProkBertForSequenceClassification(ProkBertPreTrainedModel):
|
| 229 |
+
config_class = ProkBertConfig
|
| 230 |
+
base_model_prefix = "bert"
|
| 231 |
+
|
| 232 |
+
def __init__(self, config):
|
| 233 |
+
|
| 234 |
+
super().__init__(config)
|
| 235 |
+
self.config = config
|
| 236 |
+
self.bert = ProkBertModel(config)
|
| 237 |
+
self.weighting_layer = nn.Linear(self.config.hidden_size, 1)
|
| 238 |
+
self.dropout = nn.Dropout(self.config.classification_dropout_rate)
|
| 239 |
+
self.classifier = nn.Linear(self.config.hidden_size, self.config.num_labels)
|
| 240 |
+
self.loss_fct = torch.nn.CrossEntropyLoss()
|
| 241 |
+
|
| 242 |
+
self.post_init()
|
| 243 |
+
|
| 244 |
+
def forward(
|
| 245 |
+
self,
|
| 246 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 247 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 248 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 249 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 250 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 251 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 252 |
+
labels: Optional[torch.LongTensor] = None,
|
| 253 |
+
output_attentions: Optional[bool] = None,
|
| 254 |
+
output_hidden_states: Optional[bool] = None,
|
| 255 |
+
return_dict: Optional[bool] = None,
|
| 256 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
| 257 |
+
r"""
|
| 258 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 259 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 260 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 261 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 262 |
+
"""
|
| 263 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 264 |
+
|
| 265 |
+
outputs = self.bert(
|
| 266 |
+
input_ids,
|
| 267 |
+
attention_mask=attention_mask,
|
| 268 |
+
token_type_ids=token_type_ids,
|
| 269 |
+
position_ids=position_ids,
|
| 270 |
+
head_mask=head_mask,
|
| 271 |
+
inputs_embeds=inputs_embeds,
|
| 272 |
+
output_attentions=output_attentions,
|
| 273 |
+
output_hidden_states=output_hidden_states,
|
| 274 |
+
return_dict=return_dict,
|
| 275 |
+
)
|
| 276 |
+
sequence_output = outputs[0]
|
| 277 |
+
|
| 278 |
+
# Compute weights for each position in the sequence
|
| 279 |
+
weights = self.weighting_layer(sequence_output)
|
| 280 |
+
weights = torch.nn.functional.softmax(weights, dim=1)
|
| 281 |
+
# Compute weighted sum
|
| 282 |
+
pooled_output = torch.sum(weights * sequence_output, dim=1)
|
| 283 |
+
# Classification head
|
| 284 |
+
pooled_output = self.dropout(pooled_output)
|
| 285 |
+
logits = self.classifier(pooled_output)
|
| 286 |
+
loss = self.loss_fct(logits.view(-1, 2), labels.view(-1))
|
| 287 |
+
|
| 288 |
+
classification_output = SequenceClassifierOutput(
|
| 289 |
+
loss=loss,
|
| 290 |
+
logits=logits,
|
| 291 |
+
hidden_states=outputs.hidden_states,
|
| 292 |
+
attentions=outputs.attentions,
|
| 293 |
+
)
|
| 294 |
+
return classification_output
|
| 295 |
+
|