|
--- |
|
language: pt |
|
license: mit |
|
tags: |
|
- bert |
|
- pytorch |
|
datasets: |
|
- brWaC |
|
--- |
|
|
|
# BERTimbau Base (aka "bert-base-portuguese-cased") |
|
|
|
![Bert holding a berimbau](https://imgur.com/JZ7Hynh.jpg) |
|
|
|
## Introduction |
|
|
|
BERTimbau Base is a pretrained BERT model for Brazilian Portuguese that achieves state-of-the-art performances on three downstream NLP tasks: Named Entity Recognition, Sentence Textual Similarity and Recognizing Textual Entailment. It is available in two sizes: Base and Large. |
|
|
|
For further information or requests, please go to [BERTimbau repository](https://github.com/neuralmind-ai/portuguese-bert/). |
|
|
|
## Available models |
|
|
|
| Model | Arch. | #Layers | #Params | |
|
| ---------------------------------------- | ---------- | ------- | ------- | |
|
| `neuralmind/bert-base-portuguese-cased` | BERT-Base | 12 | 110M | |
|
| `neuralmind/bert-large-portuguese-cased` | BERT-Large | 24 | 335M | |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer # Or BertTokenizer |
|
from transformers import AutoModelForPreTraining # Or BertForPreTraining for loading pretraining heads |
|
from transformers import AutoModel # or BertModel, for BERT without pretraining heads |
|
|
|
model = AutoModelForPreTraining.from_pretrained('neuralmind/bert-base-portuguese-cased') |
|
tokenizer = AutoTokenizer.from_pretrained('neuralmind/bert-base-portuguese-cased', do_lower_case=False) |
|
``` |
|
|
|
### Masked language modeling prediction example |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer) |
|
|
|
pipe('Tinha uma [MASK] no meio do caminho.') |
|
# [{'score': 0.14287759363651276, |
|
# 'sequence': '[CLS] Tinha uma pedra no meio do caminho. [SEP]', |
|
# 'token': 5028, |
|
# 'token_str': 'pedra'}, |
|
# {'score': 0.06213393807411194, |
|
# 'sequence': '[CLS] Tinha uma árvore no meio do caminho. [SEP]', |
|
# 'token': 7411, |
|
# 'token_str': 'árvore'}, |
|
# {'score': 0.05515013635158539, |
|
# 'sequence': '[CLS] Tinha uma estrada no meio do caminho. [SEP]', |
|
# 'token': 5675, |
|
# 'token_str': 'estrada'}, |
|
# {'score': 0.0299188531935215, |
|
# 'sequence': '[CLS] Tinha uma casa no meio do caminho. [SEP]', |
|
# 'token': 1105, |
|
# 'token_str': 'casa'}, |
|
# {'score': 0.025660505518317223, |
|
# 'sequence': '[CLS] Tinha uma cruz no meio do caminho. [SEP]', |
|
# 'token': 3466, |
|
# 'token_str': 'cruz'}] |
|
|
|
``` |
|
|
|
### For BERT embeddings |
|
|
|
```python |
|
import torch |
|
|
|
model = AutoModel.from_pretrained('neuralmind/bert-base-portuguese-cased') |
|
input_ids = tokenizer.encode('Tinha uma pedra no meio do caminho.', return_tensors='pt') |
|
|
|
with torch.no_grad(): |
|
outs = model(input_ids) |
|
encoded = outs[0][0, 1:-1] # Ignore [CLS] and [SEP] special tokens |
|
|
|
# encoded.shape: (8, 768) |
|
# tensor([[-0.0398, -0.3057, 0.2431, ..., -0.5420, 0.1857, -0.5775], |
|
# [-0.2926, -0.1957, 0.7020, ..., -0.2843, 0.0530, -0.4304], |
|
# [ 0.2463, -0.1467, 0.5496, ..., 0.3781, -0.2325, -0.5469], |
|
# ..., |
|
# [ 0.0662, 0.7817, 0.3486, ..., -0.4131, -0.2852, -0.2819], |
|
# [ 0.0662, 0.2845, 0.1871, ..., -0.2542, -0.2933, -0.0661], |
|
# [ 0.2761, -0.1657, 0.3288, ..., -0.2102, 0.0029, -0.2009]]) |
|
``` |
|
|
|
## Citation |
|
|
|
If you use our work, please cite: |
|
|
|
```bibtex |
|
@inproceedings{souza2020bertimbau, |
|
author = {F{\'a}bio Souza and |
|
Rodrigo Nogueira and |
|
Roberto Lotufo}, |
|
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, |
|
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, |
|
year = {2020} |
|
} |
|
``` |
|
|